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PREFACE

The material presented in this report forms the basis of an
introductory course in linear thin shell analysis as taught at
Texas A&M University. Its primary purpose is to acquaint the student
with the assumptions and limitations of linear shell analysis as
based on the Kirchoff hypotheses. As a consequence, there are no
example problems or, for that matter, any special treatments such
as shallow shell analysis or symmetrically loaded shells of
revolution.

In developing the course material, a choice in approach had to
be made. Tensor analysis could have been used and the results pre-
sented so as to show their generality. Even more appealing would
have been the freedom of choice of coordinate system that tensors
would have allowed. In spite of these advantages, the vector
approach was thought to be the more feasible one. The chief
consideration leading to this conculsion was that the students
were more familiar with vectors than tensors and hence be able to
better cope with the presented material. Since principal curva-
linear coordinates were to be used exclusively, the resulting
equations when developed by vector methods would not be particularly
complex and many of the important concepts could be readily grasped.
If the course material were such as to inspire further studies in
shell analysis, then the tensor approach could be found in the
various books and articles dealing with this topic.

In developing the course, a great deal of stress has been placed



on differential geometry. It was felt that a great deal of confusion
with regard to strains, curvature changes, twist and compatibility
could be eliminated by considering a surface and its deformation.
But even more so, by first developing the general equations for a
surface, a means would be available for deriving the corresponding
non-linear expressions.

Much of the material has been typed directly from class notes
and as a consequence the English tends to be stilted. However, it
is hoped that the material is sufficiently clear in exposition so
as to be readable. One comment on the presentation: a great deal
of the analysis depends on the orthnormal triad of vectors of the
undeformed surface and their derivatives. The derivatives of these
vectors is given at the end iﬁ the Addendum rather than in Chapter
I1 as would normally be expected.

There is no claim for the originality of the work. Much of the
material can be found in one form or another in texts dealing with
shell analysis. However, those works which most directly influenced
the present compilation are A. V. Pogorelov, 'Differential Geometry",
V. V. Novozhilov, "The Theory of Thin Shells", Delft, 1959,
"Proceedings of the Symposium on the Theory of Thin Elastic Shells",

P. M. Naghdi, "Progress in Solid Mechanics', Volume IV.



CHAPTER I
INTRODUCTION

1.1 Definition of a Thin Shell

A thin shell is a body bounded by two curved surfaces, the distance
between the surfaces being small in comparison with the radii of curvature
of the surfaces.

Smallness in this instance must be defined. It will be tacitly
assumed that quantities of order of magnitude (S/R) in comparison with
unity may be neglected. (The reason for this-assumption will be brought
out later when studying the Kirchoff hypothesis.) Since a mgXimum error
of 5% is normally admisable in shell analysis, the above approximation
is equivalent to stating that

max (8/R) = 1/20
Thus the definition of a thin shell is now quantitatively evaluated.

There are other assumptions which will be implied in the resulting
development. These assumptions are stated as follows.

a) Shell is thin (§/R < 1/20)

b) Material is homogeneous and isotropic

c) Material remains elastic throughout the stressed range and

obeys Hooke's Law,

d) Deflections are sufficlently small so that linear theory’

is applicable. This is equivalent to stating that products
of displacements and their derivatives may be neglected in
the analysis

e) Edge of the shells are plane curves and cuts are made

perpendicular to the middle surface
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1.2. Method of Solution

Basically, a shell is nothing more than a three dimensional elastic

body subjected to external loads.

As a consequence, the equations

derivable from the theory of elasticity are applicable to such a body.

Thus there are two basic methods by which shell problems may be solved.

The first is to express the equilibrium equations in terms of stresses,

formulate the compatibility equations in terms of stresses and combine

together.
Equations and are given below.
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The resulting equations are called the Beltrami-Michell

Equilibrium

compatibility



Strictly speaking, the Beltrami-Michell equations refer to the trans-
formation of the compatibility equations, which are stated in terms
of strains, to a set of equations in terms of stress. Note that
X,Y ,?Z refer to body forces and not surface forces and furthermore

that

@ = oy + Oyy+pa

The second method of postulating the elasticity problem.is to
e#press the equilibrium equations in terms of displacement functiomns.
In this manner, the need of the compatibility equations is circum-
vented since these equations when expressed in displacement form are
identically satisfied. Another advantage in the displacement
formulation is that the total number of equations is reduced to only
three, but note that the order of derivative is increased. The
equations of elasticity, when stated in displacement form are termed

the Navier Equations and are given as follows.

/4v3(,(+ FT‘-F%)%? +X =0

/4 vy o+ fﬁ~+A{)§AL+'Y'= o
|

A Vo + (w+/4)gg+2=o

where in the above,¥ ,Y, 7% are again body forces and;

A= QU 4 QI 4 QW (volume dilatation)
ax 2y oz
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~= £V = _E Lamé constants of elaticity
GeG-2v) (1+3)

Thus any solution to an elasticity problem apd any exact solution to

the shell problem must satisfy one or the other of the above system

of equations.

Various attempts have been made to solve three dimensional
elasticity problems but except for a limited class of problems, this
area is in general unexplored. In the application of the elasticity
equations to shells, certain simplifications can be made due to the
thinness of the material. Thus attempts have been made to expand the
various functions such as stress in power series in parameters of
(Z/R) where 2 is the distance measured normal to the shell. Some
success has been attained using this approach but the results did
not warrant the effort.

The classical method of shell analysis is based on the

Kirchoff hypotheses first formulated in the study of elastic plates.

These hypotheses are three in number and are given below.
i) Lines initially normal to a shell surface remain so
after deformation
ii) Line segments oriented normal to the shell surface
suffer no extensions or contractions
iii) Normal stresses acting on planes tangent to the shell
surface may be neglected in comparison with other

stresses,
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These three assumptions have already been encountered in plates
and are generalizations of the '"plane sections remaining plane"
assumption in simple beam bending theory. Their application to shells
is first attributed to G. Aron and further exploited by A. E. H. Love.
In fact, the Kirchoff assumptions together with the shell development
as presented by Love is still the standard reference work though
modifications have taken place. Love's presentation is frequently
called "first order shell theory approximation".

A number of things should be mentioned about the Kirchoff
hypothesis. To begin with, it is in geperal an approximation and
hence introduces an inherent error into the analysis. Various
investigators have looked into the resulting error and found that
it is in general of order (5/R), or one that falls within the scope
of the thin shell approximation. However the magnitude of this error
is dependent on the’ loading condition and where rapidly varying loads
are present, recent papers have shown that the error is sizeably
increased over that normally expected. Secondly, note that the
condition of undeformed normal implies the lack of transverse shear
stresses, a situation virtually never encountered. Thus the Kirchoff
hypothesis is basically an erroneous one and as a consequence, it
must be concluded that any shell theory based on such a hypothesis
cannot be improved- in accuracy. The retention of terms smaller than
order (&/R) is superfulous since it does nothing for the basic accuracy

of the theory.
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Another thing to note about the Kirchoff hypothesis is that it
introduces a contradiction. One of its assumptions is that the normal
deformation and hence normal strain in a direction perpendicular to
the shell surface is zero. In essence, this is analogous to the condition
of plane strain. However, the third of its assumptions is that the
normal stress in a direction perpendicular to the shell middle surface
is negligible which is analogous to the condition of plane stress.

For a plane stress and plane strain condition to exist simultaneoul; a
necessary condition is that the remaining two normal stress be depen-
dent. Again this condition is seldom realized.

The Kirchoff hypothesis does not restrict the method of solution.
Thus either a displacement or stress formulation of the resulting
equations is possible. If a stress formulation is to be utilized,
than rather then use the Beltrami-Michell equations as stated, the
stresses are reduced to stress resultants, or forces per unit length
of some reference surface, usually the shell middle surface. This
procedure is analogous to that used in deriving the plate equations,
The equilibrium and compatibility equations may then be stated
in terms of stress resultants.

In the case of a displacement formulation, the Navier equations
together with the consequences of the Kirchoff hypothesis are utilized.
The resulting equations are then operated an so as to yield a set of
equations in terms of the components of the displacement of some

reference surface again ugually the middle surface.
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From the standpoint of historical development and predominant use, the
stress resultant formulation is ﬁost frequently encountered. This is an
odd situation when one considers that the Kirchoff hypotheses are conditions
placed more on displacement than on stresses. The reason for the dominant
use of stress resultants are obscure, but perhaps the greatest reason is
one of historic development. Thus the use of the Kirchoff hypothesis
in plates preceded its use in shells and since the success in plate
solution came from stating the equilibrium equations in terms of stress
resultants, it would be reasonably expected that the first attempts at
a shell equation formulation would closely parallel those of the plate.
Aron and Love used the stress resultant formulation and others that
followed built on their historic developments. Another reason for the
use of the stress resultant formulation is that unlike the displace-
ment formulation, it is insensitive to the discrepancy between a
plane strain and plane stress formulation. In the displacement
formulation, the assumption of ﬁon-extensibility of normals to the
shell middle surface must be discarded if a resultant plane stress
formulation of the shell equations is desired.

Work has been done on the displacement formulation of the shell
equations. This work is chiefly attributed to V. Z. Vlasov. However
some fundamental questions have as yet to be answered.

1.3. Consequences of the Kirchoff hypotheses

In elementary beam bending theory, the assumption of plane sections

remaining plane led to a simple formulation of the stress equation and
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the displacement equation.
My dy - M
O'_%%g ; E:I:a;?z-

Now if the deflection of the elastic curve were known, then the
stresses, strains and displacements could all be calculated geometri-
cally. Thus the plane sections assumptions reduced the problem to
one of finding the deflection of the elastic curve. Now in the case
of plates, the Kirchoff hypothesis allowed an assumption of linear
variation of the displacements and hence strains through the plate
thickness. Thus again, if the deflection of the plate, (actually
the plate middle surface) were known, then stresses, strains and dis-
placements could be found by simple geometric means. Hence the
solution of the plate problem was reduced to the solution of the
deflection of a plate surface.

Jir- ¥

When the Kirchoff hypothesis is used in shells, the conclusions
are the same as previously encountered. Namely, the Kirchoff hypothesis
allé&s one to assume a linear variation of the displacements through
the shell thickness. Hence the displacements, stresses may all be
calculated in terms of the deflections of some reference surface
(again the middle surface). Thus in shells, the solutions to the
shell problem reduces itself to predicting the deformation of some
surface. However, unlike the case of the plate or beam, the resultant

equations are stated in terms of stress resultants which ultimately

are dependent on the deflections of a surface.
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It may then be seen, that the most important consequence of the
Kirchoff hypothesis is that it reduces the analysis of a three
dimensional problem to the study of a single surface. Since the study
of surfaces is so important to shell analysis, the next chapter

will be devoted to a review of analytic and differential geometry.
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CHAPTER I1

Surface Study

The study of thin elastic shells is such as to finally reduce the
various expressions to functions acting on the shell middle surface.
This is no more than a generalization and explicit statement of what has
occurred in the study of simple beams and flat plates. Thus in the former
case, the elastic line and its deformation was all important and in the
latter, the planform shape, or the plane was essential in the formulation
of the plate equations.

Since the study of the middle surface will become so important in the
study of shells, it will be advantageous to briefly review and survey some

results of the geometry of surfaces.

2.1. Specification Of A Surface And Its Properties In The Large

A surface may be defined as a configuration of points ha?ing a two
dimensional character; that is, a point moving on the surface, but otherwise
unrestricted, has two degrees of freedom. Thus to completely specify a
surface, two independent coordinates will always be necessary.

Assuming a Cartesiah coordinate system, an explicit or implicit
equation may be used to describe the surface. An example of an explicit
representation is the following equation;

ZF’fzﬁﬂ)
In this representation, x and y are independent variables and ¥ is
assumed to a single valued function of these variables. This equation
can also be looked upon as a mapping of points from one set, those in the
x-y plane, to those in space defining the surface. However, the boundary

of the points in the x-y plane is not rectangular but in shape the same as



the projection of the surface on the x-y plane. This situation is

shown in the sketch below.

Az

/,S\\

o ’-‘\\‘_

&
| Z=f00g)
i
|
} —> 4
' //

An implicit functional representation defining a surface is givenm by
an equation of the form
F(x,y,2) =0
In this instance the choice of independent variables is purely discretionary.
However, it might be noted that frequently the implicit representation is
used when the variables cannot be conveniently solved for an explicit
relation.
Some examples of surface equations are as follows:
a) Right circular cylinder
x2 + y2 = a2
b) Sphere
x2 +y2 + 2 2 - a2
c) Cone
x2 +y2 = k2% 2
d) Body of revolution

x2 + y2 = f(Z)
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e) Plane
Ax + By + CZ = D

Note that all of the above examples are defined in implicit form and

with the exception of the plane, are all bodies of revolution about the
Z axis.

Analytically, there is a yet more convenient way to express the
equation of a surface than either by explicit or implicit method. The
basis for this method lies in the fact that only two independent coordinates
are necessary to define a surface. Consider now two independent variables
A and/@ defined in an -/@ plane and defined in a rectangular region
such that

O A= oty osl@s,@o
Then relative to the C3rtesign coordinate system, the points (x,y,<& )

of the surface may be written as;
Y= 2(L,@)

4=y (=1,0)
Z= 2 (,0)

A representation of a surface in such a manner is called a parametric
representation. In a mathematical sense, what is being done is a rectangular
region on the C*'fB plane is being mapped on to a spacial surface, the
mapping transformations being the functional relations that exist between
o, p and x,y,% . Note that the explicit equation form of a surface may
be called a parametric representation. Thus letting A = x and ﬁB =y, the
explicit form given as

Z=f609)

may now be written as
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Z=f(°(,p)

g=¢

However note the difference between this representation and a true parametric
representation. Here, ol and/5 are defined in a definite region in
general non-rectangular. Thus, the region of definition of «~ and3
itself depends on the shape of the surface, a situation which is not true
in a true parametirazation.

Consider now the paremetric representations of the surfaces previously
considered.

a) Right circular cylinder

x=aCosp ospszﬂr
y=aSinp 0O <
= o
AZ
8 \o(
il \ .
» | 3
\
x
b) Sphere
|z 2’=O.8m/33md O=A=2T

3=CLSm(5CE>So( O=g=T
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c) Cone
x= kd@S(B ; 05@5271
g:haSm{a; 0<

Zz X —]

Body of Revolution
x = f(d3@5/5; o=p= 2N
y = f '5"’)(8 ; O<ol
£ =

}

\

DY
>

Now in the examples cited, note that o« and /3 have direct gepmetrical
interpretation in the Cartesian coordinate system. However, note that their
definition is such that they continuously and arbitrarily vary in some
rectangular region of the ( og-ls ) plane. The fact that we draw an
angular measurement by means of circular segments is just an aid in
visualization, Note further that the parameters ol and /5 are not unique.
The ones that were used in the examples were the most nautral and convenient

ones to use. However, any other set of parameters would have equally
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described the surfaces.

Summary :
1 All surfaces must be described by the use of two independent
coordinates.
2. There are three ways of describing a surface.
a) Explicit relation:
Z= f64)
b) Implicit relation:
F(%,y,2)=0

- c¢) Parametric:

XY= 7&,]@)
y- EG%fS)
Z- 2 @, @)
3. The principle value of curvalinear coordinates is that their

domain of definition is a rectangular plane area and hence

independent of the shape of the surface.

4. The parametric representation of a surface is not unique.

s

2.2. Surface Properties In The Small

Since the purpose of the present surface study is to facilitate the
development of a set of differential shell equations, it might reasonably
. be expected that the properties in the small would be more important
than those in the large.

2.3. Concept Of a Tangent Plane And Normal To A Surface

Consider for a moment the equation of a surface given as
Z= J9)
and consider a tangent plane to this surface. Now the general equation of
a plane is given as:
Ax + By + C% =D
where A, B and C are defined as the direction numbers of the normal to

the plane. If now the point of tangency to the surface is at the point
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(a,b,c), then since this must also be a point on the surface, the equation
of the plane may be written as:
A(x-a) + B(y-b) + C(Z2-c) =0

Now consider the partial derivative B%xl(q)b) )

i‘
|

*

~this partial derivative represents the slope of the line of intersection

of the surfaces
f(x,y); y=b
at the point (a,b). Hence, points lying on this tangent line are given

by the equations:

(z-£)= - 3@ by ; '3‘5
3 x

In a completely analagous manner, the partial derivative g%f(o,b)
represents the slope of the line of intersection of the surfaces jﬁ(x,y)
and x = a at the point (a,b). Thus, points lying along this line are given
by the equation;

(2-&) = (y- b)g,g @b 5 ¥=4

If a tangent plane is being sought to the surface at the point (a,b),
then this tangent plane must contain the two tangent lines to the surface
and hence the points lying on that line. Applying this principle to the

equation of the tangent plane previously stated, it is now possible to
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calculate the coefficients A, B and C. Substituting, the result becomes:

Fapy - + 2fw@p) (y-b)-(2-)=0
ox 9y
Thus, the direction numbers of the normal to the tangent plane and hence

to the surface are:

of 4 of ; -1
X 53

; Suppose now that equation of the surface is stated in implicit form,
that is,
F(x,y,2) =0

Then by the implicit function chain rule;

oF, SF,
ve. - CB) . ez, (%%
¥ (%)’ %Y (5%a)
and hence the direction numbers of the surface normal become;

dF . 2E. 29F
ax ’ 33 )7 22

Consider now the parametric definition of a surface, namely;

y:'z(:x)/@3 ; <3=g&,{335 Z= Z0,0)

In this particular instance, it may be more advantageous to develop
the equation of the tangent plane and hence in this manner determine the
direction numbers of the normal. Furthermore, in dealing with the surface,
it is easier to deal with the vector equation of a surface.

In vector form, the equation of a surface may be written as:

Tz.=i(=(,la) z :
iy
3
/
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In C-artes;Lan coordinates, the vector T becomes:

r=xi+yj+zk
where ;, 3- and k are the orthornormal triad corresponding to the X, y and
axis. Again let the point P, (a,b,c) be the one at which the tangent plane
is desired. Let (x,y,Z) be some arbitrary point Q on the plane. Let the

vector to the point (a,b,c) be designated as -r-P and that to Q as ;q

Now the vector Ar = Tq - Tp lies in the tangent plane. Consider now

the derivative of the surface vector r with respect to each of the co-
ordinates. For this purpose, consider first 3ﬁ/ad . Now r (=,p)

is a vector to some point on the surface. Letting o¢ increase defines a
new vector, ;(o(+ act, & ) which again is a vector to some new point on the
surface. Hence the vector;[ﬁ (uu—Ao(J(Q) - R(w),\ﬂj corresponds
to a secant vector on the surface and letting AX —> O would imply

that this vector becomes tangent to the surface. Hence the vectors Bﬁ/éd
and 83'7.'%3/6 evaluated at the point P represent vectors lying in the

tangent plane to the surface. Thus the triple product

(3’_7:/30{ < 3%/6).AR=O
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Now:

Hence, forming the inner product, the result becomes;

0y 9% _ oy 9 - 2Z 9x 79 b —3x 3g\Z-2)=0
(53:7;; dﬁig\ (=D + ao«o}s dleé&ok>(é )+ ao«%g d/aa—ﬁ =

where all the derivatives are evaluated at the point P(a,b,c). Thus, the
direction numbers of the normal to the surface defined in parametric form

gle given as:

(4% -2 (2825 (2323

Or in Jacobian Form;

B@@c 3EX - AW
8Q$)) 3@@\) M@@

Summary of Results _

The direction numbers of the normal for a surface are given as the
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following:

p—

a) Explicit Form:

z= fg

b) Implicit Form:

F(x,y,2) =0
a__ __E oF
ox ’ 3y’ az

¢) Parametric Form:

2’=7&,ﬁ);3=8&,@); z.—z(u,.@)
BEHE)I(FERPG

2.4. Definition Of A Curve And Its Representation

X

l

QJ‘Q)
2

£

¥l

A curve may be defined as an ordered continuous configuration of points
possessing a one dimensional character. An arc is defined as a curve which
does not intersect itself and has two distinct and finite ends. A closed
curve with no self intersections is termed a simple or Jordon type of
curve. A rectifiable curve is one whose length may be approxiated by the
length of<secants.

Curves are frequently represented as the intersection of two surfaces.
Thus given two surfaces, F(x,y,Z) = 0 and G(x,y,Z) = 0, the equation of
the curve formed by their intersection would be

F(x,y,Z2) =0

G(x,y,2) =0

There is a more appealing manner of specifying curves, and that is

parametrically. Since a curve is a one dimensional configuration of points,
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it should be possible to find but one parameter, say t, such that the

X,y, 2 coordinates of every point on the curve would be given as :

x = x(t)
y = y(t)
Z= (v)

The parameter t varies continuously between a and b. 1In a sense,
the functional representation represents a transformation of a straight
line segment, the t axis, to the given curve. It is assumedthstevery

point on the t axis has its image on the given curve.

With the parametric representation, there is associated the vector
representation., That is, given a radius vector from some origin to some
point on the curve, the equation of the radius vector may be written as:

T = r(t)

The vector rapresentation has the convenience of not being tied down

to a particular coordinate system.

2.5. Length Of A Curve

Consider now a rectifiable curve given in parametric form. Then by
the Pathagerion Theorem;

ds? = dx2 + dy? + d=z 2
If the given curve is stated in parametric form, the length may be finally

expressed as:
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b
~e [ @@«
a.

In vector form, the equation is given as:

2.6. Tangent To A Curve

Consider again a space curve given by the equation
T =1(t)
Let T be a unit vector in the direction of the curve and tangent to it

and consider the differential Ar.

Hence, the vector A T is the secant vector for the point P= Q of the
curve. Since the curve is rectifiable, then as Q> P, O T approaches
the tangent to the curve. Now;

|47 2 asg
Thus, the unit tangent vector to the curve becomes:

T= di
ds

Or in terms of the parameter t;

—_ | d

T= =<
ds
<z) d

ol

2.7. Principle Normal To A Curve

- = dT
Consider again the curve r = r(t). Consider now the derivative CJ/QQ.
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Thus;

dT = - L i:s.'i-f-—‘-— C‘_"S_—-
ds (%:) dtrdt  (de) JE*

Consider first determing the direction of this vector with respect

to the vector T. Forming the imner product;

FdE_-_L_ds [dx. dn.> £.d%
ds (d£> dt*\dt dt ( dt dt*

Now;
T
ﬁ.dﬁ=(d£>
dt dt dt
and;
di-.cﬁ?:ﬁ_(dﬁ.dﬁ _d% .dz
dt dt* dt\dt d+ dt* dt

But since

de) and () 2ds s,

di .di _ /ds
dt ot d+ dt
the result becomes;
2de.d% - 2ds 48
dt dt* dt dt*
Substituting;
- = e cls' I ds =0
. dT = dg =
Js (d/t)dt* (YY) dt*

Thus the vectors T and ii are orthogonal to each other
ds
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Let the unit vector in the direction of dT/dS be designated as N, which
is defined as the direction of the principal normal. Let the magnitude
of the vector be designated as k. The quantity k is called the curvature

of the curve. Thus;

Note that the magnitude of k2 is given as;

k2 =a%r . 4%
asZz dasZ

Or more conveniently;

) d‘c’>Cﬁt d
i) -
( dt‘) dt dt)

Simplifying by noting that;

ﬂ"‘é’l

) (22

dr. dx - /ds) : di.dx - ds ds
“dt dt  \dt dt d+* dt dt?

then;
2 2\ T T
k= - L [(dsYy 1 /dr .dE
(s’.?.)" dt* (dS) dt* Jr>
dt
Note that any further simplification leads to an identity.

2.8. Binormal Torsion

The vector df/ds has been shown to be perpendicular to the tangent

vector, and its direction was called the direction of the principal normal.

However, it is obvious that other normals to the tangent vector may exist,
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and in fact, there are an infinite number of such normals,
Consider now forming the cross product and defining the vector B. Thus;
B=TxN
The vector B is defined as the binormal of the curve. Now the plane of T
and N is defined as the osculating plane. Note that every curve which has
a tangent and a normal will conFain the binormal. Now consider forming
the derivative; QE. The magnitude of this vector will be called the
torsion of the Cgive and designated as Y%
Forming the derivative;

dB =T x dN
ds ds

x N

hence;
dB =T x dN
ds S
Now
0=4d (B.B) = B.dB + dB.B = 2B.dB
ds ds ds ds

Hence, the vector di]ds is perpendicular to the vector B. But B is
perpendicular to T and N. The situation is shown below;
N

Srace
CURVE

B

Thus dB/dS must lie in the osculating plane. However, dB/dS is also per-

pendicular to the plane of T and dN/dS. Thus it must also be perpendicular
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to the vector T. Thus it must be concluded that the vector dﬁ/dS must be

in the direction of N. Defining 7 as;

The quantity “Y may now be determined knowing T + N. Note that the torsion
is an indicator of the deviation of the curve from a plane curve and hence,
an indication of its twist. For a plane curve; ™~ = 0.
Summary:

The equation of a curve is specified in vector parametric form as;

r = r(t)

The lemgth of a line is given as;

as? = (_di Cdr) ae’
dt dt

The tangent vector is given as;

T=1 dr
(c_i_S_ dt
dt

The principal normal and curvature are given as;

W=gip=-1 a2 dr+1 &
ds (_d_s)l deZ dt g_g) dc?
dt dt

The binormal is given as;
B=TxN

The torsion is given as;

-TN = dB
ds

In Pure vector form, it can be shown that;

T =71 where r' = QE
<] at
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A = ‘i’X):b”,
IRlls
- =W -t
= nox °
-y =12
lh, x L

2.9. Vector Representation Of A Surface

In dealing with the parametric form of a surface, it was stated that
the surface coordinates might be represented in terms of two coordinates,
ol and /5 such that;
Y=% (d,@; ‘3’3@’.@5 Z= Z("‘:@
If now on I, 3} k unit vector system is used, then a vector T may
be defined such that
Y z(u,rsﬁf + 5(«,‘5\5_-#2&,@7;
Thus, the vector ;-uniquely defines the surface. Now the advantage of
using T rather than X, y and z is that the representation of the surface
is freed of a specific coordinate system. Hence, the vector equation of a
surface is given as;

Rn= R()8)

2.10. Length Of A Curve On A Surface (First Quadratic Form)

Consider now some surface whose equation is T ((jzp ), and consider a
point P on the surface and another point, say Q, close to this surface.
Let the values of o and fs corresponding to point P be ( °‘P3}6P )
and those corresponding to Q be ( g, pQ ). Now if Q is close to P,
then it is reasonable to expect that the corresponding points in the (enfs )

plane will also be close to each other so that;
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Olg = Np+oel 5 Ba=Re+ap

Let A= Ng-Re . The situation is shown on the following sketch.

Z)

X

Now there exists some curve whose points are P and Q and for which
the vector A r is a secant. If A T remains the secant for this curve as
Q —>»P, then it is obvious that the curve must be on the given surface and
hence, in the limit, the magnitude of the vector & T becomes equal to the
length of the curve.

Consider now finding LT, By a Taylor expansion about the point P;

A= O A + QRAB 4+ - - - -
ox 3 /6

Then the square of the scalor length ofAQ.;, which in the limit is given

as dS, becomes;

ds (3%.3% &J,{hz(a 25)(d)e) (31 a)(a/e)

o ?ﬁ 46 ¢%e
the higher order terms dropping out.
The above expression for a differential line length on a surface is

called the first quadratic form of a surface.

Consider now the above expression in Cartesian coordinates when

R= z(s,{evx-f- Y G, @3é'+ z(u,{sﬂ;«
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Substituting, the result becomes;

[(31) +(3)"+ (3] ™ <[ (322 (&)
+ (%) g_/%)j@@@@{ ) j(a/s)

For convenience in writing the above expression, let
9% . QR - F.-.(_ai.a:t ; G- (&.23
dok Jot) dot 3B I I8

Hence, the expression for dS2 may also be written as;

dsz= E (dd)z+ 2F (doh(cl(e)-# G (d/@):-

To digress, note that the expression for dS2 defines a metric on the

surface. To illustrate this, let ‘)((‘a)ﬁ)::zlj 8(d"3)=2" ;f("‘,,@)"'z\a

hence, the expression for the differential line element may be written as;

2
. 35w
ds 7_/@/’4[3‘&/6& da’/ek

Letting

3
35;,\—’ z—g' %Z‘ ; then

ds’= i Gk 8% %

13//' ks

The quantity g.k is termed the fundamental metric tensor of the surface.

2.11. Angle Between Curves On A Surface

Consider now a curve on the surface ;( °<,/6 ). As pointed previously,
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the equation of a curve is expressed parametrically in terms of one parameter,
say t. Thus the general equation of a curve is r(t). Now if the curve lies
on the given surface, then points on the curve must be coincident with

points on the surface. Thus for the points on the curve, there exists a
separate parametrization such that o= oX(t) and /@ = /6 (t). Thus the

equation of a curve on a surface is;

—

r=r [o((t))(a(-E)]
The direction of the line at any position is given by the direction

of its tangent vector T. Now

T = 1 dr

where dS is the differential segment of length and has been shown to be

ds= | E@D 2 FEls) + G

Note now that E, F and G are surface and not line properties. The only
quantities which depend on the curve length are the quantities d X and

d/6 . Note now that
’—‘:@&—C/o(vL a——}?:d
L o d/6 /6

Consider now two curves on the surface, let one of the curves be

designated as ;’, and the other by ;2. Thus;

L =7 Lo CEN]

7, = T, et p )]

Assume now that the two curves intersect at the point P on the surface.

r

Let the value of ¢ and/3 corresponding to this point be designated as
(o(p) /SP) . Then the tangent vectors to the two curves at this point

become;
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ds,
T, =1 dr
2 3, 2

The angle between the two tangent vectors and hence, the curves become;

Cos § =T . Ty =1 (dry . dr,)

dSldS2

The derivative dr is given as;

dic= 3». dol + 8». d(e

where now the derivatives are evaluated at point P. Note now that although
there are two vectors, ;1 and ;é, both vectors are the surface vector.
Hence, the derivative ?Bjiﬂgci is the same for the two curves. The same
obviously holds true for ai/dlé . However, d « and d ,@ represent

an incremental change along each of the curves and hence, are indicators

of the directions of the two curves. Thus;

dil= :a__x. CI°<| -+ a_}_z——-'dﬁ/
A a/e.

dﬁf 3% du, + 9K dsz |
: - d/e o

Hence, the expression for the angle © becomes;

=_1_ [(3n.3%) dwd OF . O dw, d g,
| .C\ose sdsg o a::)c/o(z+(°< a/e)w’s

- (3-3)0th +(Z- B o]

Substituting the defined expressions of E, F and G;
Cosoe _—_d_L__S ITE c{d,do(2+ Fde(‘céﬁl 4—Fr{o<_.‘d{8;+G#9‘ dﬂJ
[ 2
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Examples:
Consider now a right circular cylinder
<2 + y2 = g2

Its parametrized form is given as

A= CL(&sogjsaAS//?o( ; 578

O =2T f5:>C) )ji//

For this cylinder, the vector equationis given as;
n= Q,C\osuf+o.8mug+/e-/;
Consider now a curve on the cylinder. For this curve, let
=kt ; /6=1?.'t ;0<t
Hence, the equation of the line becomes;
v=aQskt ; 5=Q5m‘9.‘t ; -kt o<t
The resulting curve is a helix drawn on the cylinder. Consider now another
helix given by the equation;
'X=0.C55 k,_t') 8=Q51nkzt Y 2= b;t ’,O<‘£
and consider now bending the angle between the two helices at the point

( xX=0 3 /3=<3 ).

Now;
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dol, =k, dt de R dt

del, = Ryd & dp.= kudt

Furthermore, the vector equation for the two curves is given as;

n, = Q-C\osb,‘tz + CZ.Sm‘Q,tg' + bltE

o= a.RsktZ+ o Sin /Qz‘té_ + k,t k
Consider now calculating the quanfities E, F, G for the surface.

g= 2E.3% . @*Sirk+ a*Gdu=a’
A Ix

F = S;ﬁ-g%? =0
ox ., Ik . 1
P P
Hence, E, F, G are constants for a circular cylinder. Now the differential
lengths for each of the curves are given as;

dﬂ'l-': O.Q'C‘e(,z + dle'l 5 O‘S‘,_z= Clldbl:'-o- d/s'f
Substituting for d ¢, and d o/, , the result becomes;

8% kI b ds = dkIdt k2de”

Substituting into the expression for Cos 8;

oSO = ‘ ‘ (Oék+bk23
Or;

Cose=2 | ©=0
Hence, the two curves coincide. This is not a surprising conclusion for consider
the point at which the curve intersects the (z-y) plane. For curve 1;

klt =_73-

and for curve 2;

kot = 7T/2
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Hence, the heights of the two curves are the same above the x-y plane
and therefore the two curves are identical. The only thing that k; and
k2 do is to speed up the drawing of the curve.

2.12. Curvature Of A Surface And Second Quadratic Form Of A Surface

Second Quadratic Form Of A Surface:

In the previous section, the first quadratic form of a surface had
been introduced. To recapitulate, this form, designated usually by the
symbol I, had been derived on the basis of a length of curve. That is;

I=di-di=ds= Edu+ zrdad/e+ Gcl/ez

Now asgsociated with surfaces, there is a quantity called the second
quadratic form and is defined as (-d; . JE) where n is the unit normal
to the surface. The second quadratic form is designated by the symbol
II. Thus;

T =-di-dn

Consider now expressing the values of dr o dn. As found for dr

di=§%du+%@o§e

The expression for n has as yet not been developed but from its definition,

it obviously is perpendicular to the tangent plane to the surface. Now

as has been pointed out, 75n7éd and ‘354%3 lay in the tangent plane.

A = (a%OD o (8%9

|(°%a) % (°%p)]
Now it can be shown that
‘ 3% 4 8% |

2B ChRCE B (%%)
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or EG-F2

Note that the proof of this statement can be gotten by going back to the
definition of the direction numbers for a normal to the surface and expanding

the results. Thus the equation for the normal n becomes.

A= ( 9% o B».
VEG- F’-

Consider then the expression for dn. Now n is a function of °1q73,

Hence;

= a%o( °./°‘+a’7/a/e‘%9

Substituting into the expression for II,

1T = _.(aJLa/D(,«. 9/2,/@/ 5/7 ot + aﬂgé)
Expanding:

- - (2. an>6&) (93 20,.;3;1% (a& /a aa)@/e)

Define the quantities L, M and N as follows;

"aﬁ‘/au‘ a%o&
_4(a%d.a%€+a%.a%°)
Ko — a%ﬂ. a%p

L

=
"

Hence the second quadratic form of the surface becomes;
11 = L (0/0024- 2Mﬁ/o<0/@)+/\//o//@)2
Consider now more convenient ways of evaluating the quantities L, M and N.
Again from the definition of the normal ;;
s = [[(OF.F)dt+ Q_}Z.E)c/e-_-o
g d/a

Since QEVac* " and 3;7%3 lie in the tangent plane to the surface.

Thus, the above equation is satisfied for all o¢ and fg . Forming now
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second differential

ddr . n) =dr . n+dr . dn=0
Or;

— -— Q= -

Il1 = -dr . dn=dr . n

Consider then evaluating dz; Now;
2 - 2 - 2
di= .Al. (do) + 2 3% (dxd/e)-r Q’-.(%)
Ox? 80(95 a,ez

Thus;
2 — I~ A -
I = / OR ./ 3% % (o(x)+z§__&. IR )gac/’e)
Vec-F* 7| s | o a,e 2098 | dx 98
3/5* 3k
Thus by analogy it follows that;
oF 3% (%
aaz dk 98 M = aaa,s X "af,a'
Vee —F2 ' JEc-F* '

3% /oF by
/\/= 3,@2. S 8,8
JV EG-F* '

Note now the reasons for the second form of the second quadratic form

of a surface. All the quantities in the expressions may be readily evaluated

and furthermore, the quantity;

(aﬁ/ao("a}%ﬂ)
JEc-F*

represents nothing more than the unit normal to the surface and hence is

involved with the direction cosines.

Consider now some meaning and distinction between the first and second
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quadratic forms of a surface. The first quadratic form of a surface is
basically a measuring form since it defines a length on the surface.
Furthermore, it can be shown that first quadratic form uniquely defines
the surface area since it can be shown that

S'= '_/:\/EG—F" s

The second quadratic form of a surface tends to give some idea of

its shape. Now dr lies in the tangent plame to the surface. The vector
dE'may or may not and furthermore, may or may not lie in the same direction
as dr. Thus, their dot product gives some idea of the curvature of the
surface encountered. Note that according to the definition, dr . dn
may be zero even if dn and dr both lie in the tangent plane since they

may be perpendicular toward each other.

2.13.Curvature Of A Surface

Consider now a surface whose equation is ;( °Sf3 ) and consider now
a curve lying on the surface whose equation is T Eol (‘E)’ p(&\] . Consider
now the curvature of the curve at the point P on the surface.

The principle normal and curvature of the curve are defined as;

Ki= dT
oS

where K is the curvature, N is the unit normal and defined as the principle

normal and T is the tangent vector to the curve. Now as has been shown,

T = &
ds
- 2—
Hence; dT = dr
ds dsZ

But T is also the radius vector to the surface and hence;

IR - Ok ot 4 O% I
dgs O oy i
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Forming the second derivative;
2._ 2. 1_ -— 2
IR - [OX e , O a’,g)gﬁ+ OF o 1/ OF ol , OF o/)¢
g | ox* IF Fg8 OX o2 /aa’.s” * a2/ e
- 2
+ Ok Q/,ﬁ_z
0/?6’ as
Consider now forming the inner product of the curvature of the curve and
normal to the surface n. Thus;

A7) = A C3s AP

where AJ} is the angle between the two normals. Thus;

“asnt - ——)5— (LN BRI E
F/o()) ) /a’,.s"“

But (3;/60() . n =0 and (3 ;/0/76) . n =0 since the derivatives lie in
the tangent plane. Hence the result becomes;

oSS = L d Q__. : .Nn )1
ACs S g [a:ﬁ A )+ 2 x;e )(do(c}e)-i-(af_‘% )@6:,

But inspection of the bracketed form reveals that this is the expression

for the second quadratic form of the surface. Furthermore, the numerator,

dS% is nothing more than the first quadratic form of the surface. Thus;

2

%stjz- LO/o(z—;L 2/"70/0(464—/\/@{9 ' - I
E ol s ,2F0/°(a//&+ Ga/(g 2 ) e

Consider now the meaning of the above expression. The quantities

L, M, N, E, F, G are all surface properties defined at each point. However,
the quantities d ¢ and %/5 do belong to the curve drawn on the surface
since ol = & (t) and /(?= 1/3 (t). Now the direction of T is the same

as that of dr. But
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dr = X, dd\ —+ ah,c{(é

Er

However, a given point on the surface, 3 ;/Sok and 9 ;/3/3

are surface properties and independent of the curve passing through the

point. Thus the direction of T is determined by the quantities d o, df9 .

Thus if there be a series of surface curves passing through a given point
on the surface and all have the same tangent vector at the point, the

quantities d ¢ and d/S will be the same for all curves. It must be
concluded, then, that the expression ,&ﬂcgsn} is independent of the type

surface curve passing through the point P but be solely dependent on the

direction of the curve. This can be shown as follows; Rewriting II/I as;

A Cos = L(o’o)""zﬂl 65)4_ /g/é)
£ (8)- (BB - (B

- oF . %/, alaa/e>
o/,sv ol oS,

Now;

where for a surface curve, the partial derivatives are fixed at a point.

Hence, for two tangent vectors, T and 52 to be equal;

L)-(52) 5 (B)-(F)

and thus the expression for ,kf(}syvﬁ is invariant with the curve but is
dependent only on the direction of its tangent.
The normal curvature of a surface,.nﬁ; , is defined as
A= A (s f
where 446 is the curvature of the surface in the direction cﬁ;ﬂ'eéf

This is known as Meusiniers' Theorem.
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It is obvious that a given point on the surface will have infinite
values of curvature corresponding to the infinite possible directions
on the tangent plane to the surface. Note that the normal surface curvature
is directed in the same direction as the normal to the surface and will
have the same sense of direction as the principle curvature of the line.

2.13. Surface Curvatures And The Indicatrix Of Curvature

In the previous section, the curvature of a surface at a point was
defined and it was shown the value of the curvature was directionally
dependent. Thus at a given point on a surface there are an infinite
number of values possible for the curvature. These values may be classified
by means of the indicatrix of curvature.

Consider now a point P on a given surface and at that point construct
a tangent plane to the surface. Consider calculating all the possible
values of the curvatures at the point P corresponding to differently
oriented line segments passing through the point. Let k be the curvature
of the surface. Now in the tangent plane lay off values of f }42 I?i.
in the directions from which the curvatures were calculated. The situation

appears as follows

The locus of the end of the segments drawn is a plane curve lying
in the tangent plane and is defined as the indicatrix of curvature at
the point P,

Certain facts should be noted about the resulting curve. The first
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and most important is that the curve is symmetric with respect to the
origin.

Consider now determining the equation of the indicatrix. Toward this
end, introduce an x and y axis. However, rather than being orthogonal,
let x lie in the direction aﬁ/ao( and y in the direction 3’1/3/5.

Thus x and y lie in the directions of the tangent vectors to the
coordinate curves. If the coordinate curves are orthogonal, then x
and y will be orthogonal. Let R be the radius vector in a particular
direction in the tangent plane whose length will be [(}ﬁe){ %

The situation on the tangent plane is as shown.

Consider now expressing R. Remembering that R is on the same direction as
the curve from which it has been calculated and the direction of the curve

is described by d «x and dfﬁ, then one expression for R is;

e J06)] | ()
(*%a)dr (P04

However, ﬁ'may also be calculated in terms of its components along the

x and y axis. Letting the tip of the vector R have the coordinates x

and y, an alternate form for ifmay be derived as follows:



Now aj;/ot and %/3 are constant vectors. Hence, (gb'/aobﬁv(
and<<a§gé)zﬁ/s represent the components of the vector A r along the

x and y axis as shown.

The quantities A<d¢ and A4 are scale factors which multiply the
assumed base vectors ai/ao( and ah/d/@ . Now consider the vector R
and the coordinate axis x and y. The length of measure along the x and

y axis will not be the same but rather will be modified by the ratio

o
1G]
e 1%
where x and y are equal increments of measure. Thus the x and y
components of the vector R will be, respectively
( Q_f)x and (@i}y
2 B

Thus R may now be written as;
§-=(3{3x -/-(QE 4
Jd 9o

Equating the two expressions; _ _
(Ex+(32)g - |(E) A | (R (a)de
ax/” \ge ke (%) ot + (*40)4d

Dot multiplying the vectors by themselves, i.e., (R . R);

ok o)y o5, 2 “,9», = =)
3 got ‘(”‘ _&)x3+3§d/8 4" l(h ,Idsl"‘: B = J

d % oK
(- ) ()]
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2

But de2 = II = Ldo\” + 2Md= d‘g + Nd]s?' by definition,

above expression becomes;

£5aé(€b2/7%§qés-6;qé;
‘Loéz2+.2M c/o(;//eu- Noje*|

However, from the nature of definition of x and y;

Ex* 2Fxg+ Gy" =

dxX - Z - constent
I

Thus;

Hence, the

2
EZQ-/—ZFzyfe}/z—_- 52’+2/-‘:%</+Gvgz
|L2'2+2M2;/+A/51l
Thus, if the equality is to hold;
|L2'2+2M;?+A91’ =1

This is the equation of the indicatrix of curvature.

Note now that this equation may be plotted in conventional cortesian

coordinates. In doing so, a number of forms result. Thus;

a) (LN-M2)3> 0, illipse (illiptical point)
b) (LN-M2)<: 0, a pair of conjugate hyperbolas
c) (LN-M2) = 0, pair of parallel straight lines

2.14, Principle Directions On A Surface

The equation of the indicatrix of curvature of a surface is a quadratic
in x and y coordinates and which furthermore possesses radial symmetry.
Now the resulting values of the curvatures will take on extreme values
and it can be shown thaﬁ the extreme values correspond withrthe directions

of the axis of symmetry for the indicatrix of curvature, and furthermore,

these adeg are orthogonal to each other.

The principal curvatures of a surface at a point are defined as the
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values of the extreme value of the curvatures and furthermore, the
corresponding directions are defined as the principal directions.
One of the consequences of choosing principal directions is contained

in Rodriques' Theorem, as follows:

If the direction (d) is a principal direction on a surface, then
dn = - kdr
where k is the normal curvature in this direction. Conversely, if it
can be shown that
dn =7\ dr

where "\ 1s some constant, then the direction (d) is a principal direction

and N = -k,
—

The implications of Rodriques' Theotem is extremely important especially
where elements of line length of the surface are contained, To illustrate,

consider a portion of a surface and two points P and Q through which some

space curve passes.

Now from the sketch, it is obvious that without any restrictions on A T
and ;; there will not be any assurance that the two normal vectors to P

and Q will intersect. In fact in genepal, this is not the case. Rodriques'
Theorem states that if the.line direction is a principal curvature direction, '
then in fact, the intersection of the two normal vectors is assured. This
can be shown as follows;
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Consider looking into the plane of the vectors A T zpd ;p Define a
quantity termed a radius of curvature of the surface such that
1/R = k

The sketch appears as follows:

Note that as A T —> 0, then o nand A T approach perpendicularity

to the vector n. Now from the figure it is obvious that

AC=0n A8 = lA__J.Z/
Rp

Hence; IA—hJ=AS= QPAG . Thus, this expression is true no matter
what the orientation of A T is to Pal ; However A6 is indeterminate
in that it is the angle between Rp and a line drawn from the center of
curvature of point P and point Q.

Consider now the situation when A T and PaN n are parallel. To
begin with, the two triangles shown in the figure are all in the same

plane. Furthermore;

Tan a@ = ‘,{F‘?I ) Tanaes= A5 (and
N

But/fl=1 and An = kpA_;'. Hence;
Tanae = b, [arl

and thus it is concluded that

Page 2-36



AQ=46

The condition on the angles implies that ;}& and the line connecting Q
to the center of curvature of P are parallel and thus this latter line
is in the direction of the normal to Q. Now for sufficiently small values
of AT, the curvature from P to Q changes by a second order magnitude.
Thus, the curvature at Q may be considered to be the same as that of f.
The resultant conclusion is that AE@ measures the angular deviation
between the two radii of curvature between P and Q.

A curious and unique condition then exists on lines drawn on a
surface in so far as measuring differential lengths are concerned.
Given a line and its curvature 4 , the length dS of the line may be
written as; dS =& i where Jé is the subtended angle between the
two curvatures of the line. However, if the line is in a principal
direction on the surface, this same differential length may be written
as dS = kd®& where k is the curvature of the surface and d© is the
subtended angle between the two principal surface curvatures. This

situation is shown on the sketch below.

ds
]
7% 2tk
7 S
(=)

2.15. Principal Curvalinear Coordinates

Consider again a coordinization of a surface
R= (=, B)
and consider now a system of curves on the surface corresponding to a

variation of each of the surface parameters. That is, a system of curves
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obeying the equations;

4
2= 7, (Egé ,
Since each value of and determine a point on the surface, the

= X (X, 8))

resulting curves T, and ry form an intersecting mesh. The system is

shown as follows;

Thus, along a curve for which /5 is a constant, o varies continuously.
Such a curve will be termed an "< curvalinear coordinate curve.'" The
converse of the argument will suffice for a "/AB curvalinear coordinate
curve." Now assume further that the ¢ and/x3 parametrization had
been so chosen that the resulting curves coincide with the principal
directions on the surface. The resulting system of curves are then

termed "principal curvalinear coordinate curves."

It is this system of
coordinate curves which will be assumed to exist on the surface.

Consider now some of the previously derived expressions when applied
to principal curvalinear coordinate curves.

For coordinate curves, it had been shown that the angle between

the tangents is given as;

Coso = 2=
VEG
However, principal directions are orthogonal to each other, and hence,

Cos © = 0 which implies that
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F=0
Now the expression for the differential line element becomes;
T=obet E6u)% cleo@”

Consider now the expression for the second quadratic form of the
surface. By Rodriques' theorem;

dn =-kdr
where the direction chosen is along a principal curvalinear coordinate
line and k is the curvature of the surface corresponding to that direction.

Hence, it must be concluded that

where k ,, is the curvature in the direction of the o¢ coordinate line.
Similarily;

R . _k

OR, s on
/8 ]
Since the coordinate lines are orthogonal, it becomes obvious that

éﬁ.-aﬁ_—_ - @i.a_g
o s ° s 5&=°

and hence, the expression for M in the second quadratic form becomes;
M=20

Consider now the expressions for L and N. Now;

L:—S’JE'.QE = é é{.é.-'a
28.97 = Au(9F.2X

Hence, L=bE
By an analogous argument;
N=£GC
4

Thus the second quadratic form may be written as;
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II= 4.,5/0/0/)24- éaG(a//e)z

And the resulting expression for the curvature in an arbitrary direction

becomes; .
2 2
;6: 4«5/04() + /6,66(0//6)
£ (du)*+ G(a)™
2.16. General Comments And Summary Of Relations For Principal Curvalinear

=

Coordinates
Principal curvalinear coordinates are orthogonal to each other and are
oriented in the direction of the principal curvature of a surface.
The first quadratic form of a surface, the length of a line, is given
as;
s E(eh)+ (g

The normals for two points on a principal curvalinear coordinate line
intersect and subtend on angle d8 such that
dS = de/k
where k is a principal curvature.
The second quadratic form of a surface becomes;

I = A< E )+ ég G/O//é) *
The vector d n and the vector d T are parallel and related by the
expression
dn = - kdr
The principal curvatures are dependent on the direction of the surface
normal and the magnitude and direction of the principal curvature of
the principal curvalinear coordinate curve. Let/ﬁ be the curvature
of the line and ,by'the angle subtended between the surface normal

and the principal normal to the line. Then, the curvature of the

Page 2-40



surface is defined as;
b= KBs S}

7. The theorem of Bonnet states that if the first and second quadratic
forms of a surface are known and if the coefficients satisfy the
Gauss-Peterson-Codazzi conditions, then a surface, unique to within
its position in space, is completely defined. Now for principal
curvalinear coordinates, it has been shown that

T= £ () @)
= 46 (o) +he G(efs) ™
The conditions ‘©f Codazzi and Gauss will be derived in subsequent
chapters. The important conclusion is the following:
If a surface, parametrized by principal curvalinear coordinates
exists, knowing the coefficients of the first quadratic form and the

principal curvatures is sufficient for a complete description of the

surface.
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CHAPTER III
DEFORMED SURFACES. LJINEAR THBORY
For the undeformed surface, it had beem shown that fer primcipsl
curvalinear coordinates and 8 surface equation of the typens}i(qt,p),
the first and second quadratic forms become;
T= AN B‘(J,@)‘
T k A wbe Bde)
where k‘aad kpare the prineipsl qurvatures of the surfaee.
Consider nov the deformed surfaceﬁ/aud assyme that it m3y B¢
derived from the umdeformed syrfaee im the fellowing mamner, With
each point (gl,,s) on the undeformed surface assyme there exists 8
Jector fynction § such that relative to the erthomormal triad
@4 ,g’ ,t) on the yndeformed syrface;
T=url +v'; +wk

The sityatiom is shown on the aecompanying sketch.

A

Undeformed
Surf,

Deformed 4
SU#QCQ © . ’

Thus it is obvious that & = E(g,p). Now the equation of the

deformed suyrface may be writtem as;

RsR+E
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Since )T-=)‘i(°( ,@) and § =& (a\,'g), it is obvious that o( and,e will
also be parapeterization of the deformed surface and hence o(ande
coordinate lines will exist on this surface.

Consider now the general expressions for the first and second

quadratic forms of any surface.

I= £ (doV+ 27 (@u)(de)+G (g
= L oY+ 2MEe)8) + N Cd,ex"
where,
a— - — -— -
E= e&"gg% F"ggi‘jﬁ? Gr 252055?
L= 'a.J—L_ o} R R A ¥ ) = - -- "
= ;;3 M Ga_i_z,d_aﬁ % 'a%? N a?:. ;_ag

Or equivalently;

. % 5 .3% .7 N= 2K .A
L= 5P M'au7e e

3.1, First Quadratic Form

Consider now evaluating the coefficients E, F, G. The equation of the
deformed surface is given as;
}it:ji-f EE
Forming the various derivatives;

=3 ani.ai 2% , 9%

== =2 0%
dok ~dox "I 98 de I8
Evaluating the coefficients;

a) E
aﬁf Eﬁ; ahb R ‘>+_z<15h. E;§€> </ ._j§>
do. dot au =T JoL
However as has been found for the undeformed shell;

OA oA I
and for the deformed shell;

2= us+vy +«rk

- 3 2 - - - -
2% 8% - A~ and 2R -AT §7g=84
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Consider forming the various derivatives of I;
oF - &u4+a§4+av v;4+3wL+

don o ot
Substituting; and combining H

- | O 4 | 9A T - T4+12
- [3u+ 428w ek {gg: é‘%‘f]# +[3e-hadlE
And similarly;
2% .[Bu_ L o8 v|r [a 5 r [a_ _LBv]E
5 [5/? 4 %’u— T4+ %4-#%44-5#8&944- d;‘-{‘-t éﬂBv
Hence, forming the expression for E;

E = A%+ 2A[@A—+J_3AV+IQ Auf]+[_§.l&-+ saa-/g-'”"*Abaw]

+[3_:u' J.SA;] [a Ang

Consider now introducing linearity into the problem by arbitrarily

wrak
I

stating that products of displacement functions and their derivatives

will be neglected. Thus the linear expression for E becomes;

e-4"142 1 u +Asa ,_lg,ay)]
b) F
Now;
F= % ag;: ey aoc) (33/3 oh+ 92
Expanding;

(85-35) (- 28)+ (35-30)+(% -3

But on the undeformed surface, (3%/ a%) 0 and hence;

% .28 - [2u _ 1 3B v/A
Ak a,e d/e A ot

a—E cai: —QY_J__@AAL 8
5/6 Ao o Bée

3% ,3& - (ag.+J__A.v+kﬂAar>(ag_ _L OB, /3. |94 LY, 138«
St aa/e 48 A St K 59,3 B act

+lzzPBw)+(g;z-L¢A19(g§_rJ%8w>
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Note that the last expression leads to non linear terms in the
displacements and hence will be discarded. Then the expression

for F becomes;

F = A 98 v+ BIur_ 94 w
98 I Ok d&

and which:may.also be written as; ..

o

Fa AB[LQAL.._LQBV+_L3V'_J_ _A.MJ
BJ8 ABIX A Jx AB I8

which is equivalent to the final form

Frsl L2 £208)

c) G
Now;
G= /. 9%/ - (PR, J& .(az. 28
LA e A
Expanding;
G= @ﬂo_a_fi 2 %.a;i:_ Qg-cgi
(-3 P(33
Substituting;

(@2@.(2&1 = B*?

(gdf. 3%? = 8(3_"_T’+J_§E M»ps@

96 A dot
oF , 9% = terms non linear in the displacements.
o8 3/5'
Hence the linear expression for G becomes;

= B> 21 o B
G= B 28 (L 5,;*5%3::*“'36“9

The resulting expression for the first quadratic form becomes;

I-= ,41[7:+.z(%k-gft.tzgi%%1r+lgﬁo>](2&2?4‘2AH1[€}42;(%% +

£ @I i P

A Sl B 76 AB dot
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Define;

Cuxt = Va 6"‘/39( + %\83%/9 V + kywr
Cug- VA aé,e (%) + B4 %«("/B)
Cea= e ° s + Ve ® Do 4+ Rewr

Then the first quadratic form may be wrltten as;

I=A (l+2.e,g.h(dol\ +2ABECg (dob(o}e)-:-a (|+zepp3(4e)z

3. 2. Second Quadratic Form of a Surface

The constants L, M, N have been previously defined. Now consider
the expression forh ;

h= 3)2, ’an
JEG-Fx 1 \8xt 3/6

o'~ % .28 . 2%/_ 9%, oF
Hence; 3ot % oot 319 d/e 5/?

3T (230) « (35 735+ (2 )+ (3 22

To recap_ltulate, -
Sh. A% ; 2F.8y; PT. ACLT+3U_ LML 4+(éesz_h.Aw>h
98 dx B 98 ox

| 3B #) T+ BE duwr _k Bv)k
aa n oK * '6’34 (d/e r )

Consider now forming the various cross products
R y % = ABER

I d

ax a.i.‘ - Al - Bwj + ABe

aeL % ) ( EF ? p‘s

& 25 . -8 Bw- b_(AM>A +ABC k

X de ( b

o8

Ot a(e = non linear terms in the displacements.



Hence the normal N may be written as;

Fi= (h ABM- B >A+(§9ABV-ABW)3'+ AB (+¢«+§p)g

EG-F™
Consider now the second derivatives of R’ .
o’
a) Ju=
Now;

Substituting;
éﬁl = 2 (AZ)= A 22-+§y1.r
o % o oA o
Henig; 12
A% - SAL-AAT_k,A
St > aa.* Ba/gé =
And;
uﬁ_.a\ [a‘v_:A_']—a 3 (& Aw)| k
S - Stdk I %%%'A) 4+ | G aa(" u)
+Ae, QU _ 1 3A ) aw— k, AL OB
ﬂéﬁ= I B.?e dx

Substituting for the derivatives;

2% . [aGey 242 o4 ko A A | £
da> [ox +Ba,eaoa s*( )M’L <AL - b j

PN Ao

Hence;
Ok = | BA +BLAC )+ 1 34 BV _ I /0AVu +kiAQuwr_ k2A* | T
DA > xR O eéa S B 43 At

-+[T’5 %6 +'3;f; é?-(;3¢%s’%> —A Covot 54— h.ﬂé + ur
—&%(k%A-‘u\’ th @“,‘]L
b) an
qe’-

Now

__§
2.
s

\%l&.

g
36>
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Substitq}ing; .
Ot = 2(8j)= -B 2Bz + 9B 7_k,Bh
o = 2(0f) - B oRT - 27— b

Consider now the second function;

37:% - B% _;_ ’27%3’9_72 +£_(ae,,pg g%,;%(bp@]z
[+ TE o Z (e B
Substituting;
SE S BE3)-R G [ a R Y -
L (38)r+ b 83 -hie] 74 [ 325 - B (ho)- 554 b
And hence;

O/ [.B 238 % _2./138)-B 38 Ge|7T+[0B+2
ge> L A o< " oa* ‘?e(a Ev)-EE pp]“’[é?*#(a%x

2 2 2 - Y
1,28 9u __t /3B v+ kgBIur _ smj _k,.B
4'6 a«ép A éu) T 7& d+ ‘3°

(N 2 T
+-i;jﬁ£ —55311?38'33-%g E;‘%Q%J k.

o 2. 2
Setdg = I d/e)

Now; _ -
220D &
But
(B g8
And;

a% 6%) - [a_‘& -2 G 3_3_17)] T é_%(se;qa)g'+[g% Tﬁ.(gav) L

_ 1 A Qu . L. 9A Q3 -k A2 38 ]k
St g e -

- 33 S T +[b_‘A %r _Ldl}eAijI
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Combining;
@2@83_3: _____1_3_5_»5 4+ koA Qur— A.J:AB'V.;- %@j:{'
X\ & 3476 Ao\ A S /6
MESCNETE L R ]4*‘[%73-5*@5")
— kA % +A,(§§ 'u:]h.
Hence;
ox’ 3 k, - 3
303/6 ? éa;((g Bv)-t- A%E h.\kpABV-b _Agapj
+ £ 8%,.3-1_@49#+_8A 28 w3+ Sl - 2(kev)

Ba,aa/s AB ds o &x/a
b A aéL.p hx._ﬂ.vi]li
/6

Now for continuity
R’ _ k%!
ao(d)g afeack

Consider then evaluatlng the second combination.

2 (8E) 535G
76(55)‘6/@” J

a _
( (Ae‘.buf[a?e 7% %@J gaf',;--a@“‘“)_]"
*a“““# P BT a3 A YRR
"d,é m]—k.;-[h,s S ,%ABM]J'
Combining;

%(%>=E3,€-*7%""%-A-3%8 As 384T+ [ 3 3
FY - 3A_ 1, 3

+a:;e 7% ) g,s_g: ke *ABM]J’-#[__&: M.A;D

—h{@Béz +’3¢éAM k
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*_
Inspection of the two expressions for (317. /ao@e) indicates that one
may be derived from the other by an interchange of letters. However,
as might be expected, the resultant expression should be symmetric.

Hence letting;
R’ _ L 88"\, 2 (3K
5fﬁys Y l:gEE(éé?)*ﬁ4g 1&&)]
k_Then the final form for the mixed derivative becomes;
22’ 2]284 [ 2 '—E.Ev>+h.‘Ae_o_¢:-k., B4 A Cug+ B (ACL)
dade” L de Taage S\ A du G AT e e

L3830, L 2Ad8Bu I+[zé&+é(ag,e)-i-ié.a&u_ 2438 o
A ot I ABga dol dx O Bd/age Aafga«

5B €. + 3% _ B/ oA 83w - kubs ABK]T [za_?a:
+dol_ q"+8=<<§e 774 Bd/e@‘k%@ I 7~ Jd+ dxd8

~ Bv)-k  ASM 4 ky 38 v— B (k AL) -ke B Aulk
a%a?/a v) 4A;‘$.+k 2%'”’46(« *“') s éo(+kﬂ3;AJ

—

Consider finding the coefficients L, M and N, In doing so, only

terms linear in the displacements will be retained.

a) L 2, ,
L=S_J_’~l-f)
Substituting;
L= i [k ABIA - BAA dur _ hy A*3A vy A* A Bur . AB
N/l ™ It IX b" I8 s e I8 .

2 3 3
+ABuUL —AB.Q.&.,AA)—Q'MA BQu-kaA'B q,,._]
x> SR
Consider now evaluating V£G-F2. As found on the section on

the first quadratic form;

2
E=A(+26.) ; F=ABGs ; G= 8 (1+2Gs)
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Forming the products and linearizing in the displacements;
VEG-fF2 = Yo
EG-F* =AB[1+2 (Cuut Ea6)]
and hence by the binomial expression;
/
— L _/ -
Teeer = i L~ (et )]
Thus the linearized expression for L becomes,

= hud Dep L 24 4 s+ 4, 2 QA. l;,ﬁ.%v-»ﬂﬁ-(h.a)

ol ™
- kyAreus
b) M
13). -
M= 30‘?6 e N
Substituting; k‘
= ABOA u _ B 9A w4 GB_B.V‘—ABB Qur
\I_EG—F"' d/e J/d dak %6 o ¢’)€
2
+ABOW _ AB 2 (k.Bv)-hkuA'B 3% 4, kyAB - Au
b g B2 "Z g8 T % ol 157%“"’)

- sg___zéki'+» ﬁg_l?éﬁlxx
3 viee”

Or substituting for
2
M= Jdar _

aec?ael— a,e Aa;eaoc /e

The terms involving the tangential displacements u & v may be

considerably simplified. Thus, expanding and using Codazzi conditions;
haaAAN%éB.V- kg éiv—ls,g_a_'z: %_QAA %A %4-&.&2‘\”

" zax 2 oo
QA su - BQJ::
+'f' A - j—d/d 3¢
Combining,
ko QA 4t + kg 3B - 5 ¥ - by A S
°‘a'/a ’ea«x ’3« h a/e
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T

Hence the expression for M becomes;

M= a_s:__a 8 AL ) -A2
8a§e asg';‘;’/\;,‘fﬁ*k"(;f"“ A?/%>

+he (33 v-BE)

N
2
=3’ &
Ja*
Substituting, 1@.& > 83
N= Bg-p"- [ k«B u+§_35 @'4. ‘lp ABQE v- ’qq—a&‘a“” ‘7‘0

+98a;3::_ ABi(J;,B'v) l;,na%e I;eaae“ 13,93 eﬂﬁj

Substituting in the value of VEG-

N’—é‘B'*'d/az A"-%E'%‘I ‘LQB%& ‘5‘%7"’“"‘5
’;)%(598”) lsdnee

Or recombining the tangential displacement terms

N= ._g,e '+ aw',g £ 8 asz:..__g,&.sc 4o .28 4-%(9.7)

. do(
Y-
4a &= o
Define the follow1ng quantities;
Olr .1 34 dur__L. 24 -2
/‘@ RS Ak ok AB*gde /e + 7 2 Chasd g’%g;%”

A< —L 9-6134-——33%:4:- 98 dur , 1 3 (k) + ky 3B u
sza/s 53765}6 A*BIxk dx Boa AB Jdot

Y= -4 S, L 28dr,L 28 b.( 34.2) by (127 L 287
‘ AB 3«79*@‘3 98 éx*na‘aet a;e 8as 8875 é’ AJdx ABJIal
The coefficients of the second quadratic form may then be written

as;

L=- AQ1:*%;(}*6&;)*)<;]
M= -ABY

N = -82[’3@ (1+Gae)+ 45 ]
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Hence the second quadratic form becomes;

= -A" [k o)+ K@D - 248 T (fa)- 8" [k, (i+ ) +ag] @)‘

Sumpary:
Defining;
f-esu- 7% -3 %685{33”’ +hkow

e85 (4F) + SEu()

Sse= Vo 8#' + Yig ¥Buu +bgur
A=~ BB Pa)- M %5 2% 1o Bllhus b g¥0e™
4=~V 5a (%67 %) oo *Fi> Tou* 1o Yo B + "%
:‘-_— ‘ZB 3’%:‘}94%/9‘5 3%/9 a«gx 1}9/51 3};’/“ 3(%’-»/2. e% (%)&‘Z,’ﬁ/g‘(%)
The first and second quadratic forms become
T=A"(+2€. @D+ 2AB Sy (del) (da)+ eamze,,,.)(dp"

=5 [k G+ Q,}+1,j@a3\—248?ﬂ¢)(48)- e‘[ﬁ, (1+Ge)+Aa] (f;)"
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3. 3. Middle Surface Deformations

Consider again the deformed and undeformed surfaces of the
previous section. On both of these surfaces there are X and/S
coordinate lines. In particular, this set of curves are the princi-
pal curvalinear coordinates of the undeformed surface and hemce are -
orthogc*al to each other. Fﬁrther, the tangent vectors and the
normal,ﬁi ,:i; ,75 , of the undeformed surface formed an ortho-
normal triad of vectors, |, R .

The case of the deformed surface is different. For one thing,
there still exists a set of curvalinear coordinate lines on its
surface which correspond to the of and,é parametrization of unde-
formed surface. However, inspection of the first quadratic form
of the deformed surface shows that these coordinate lines are not
orthogahal to each other and hence are not principal curvalinear
coordinates of the deformed surface. Thus the tangent vectors to
the curvalinear coordinate lines of the deformed surface are not
orthogonal, and, strictly speaking, an orthonormal triad cannot
be constructed on the deformed surface using tangent vectors.

The situation is shown on the accompanying sketch. Three points
on the undeformed surface are shown as O,P ,(Q and these points
on the deformed surface are noted as OI, P,, G.'. Note that each

point on the deformed surface has a corresponding image point on

the undeformed surface.
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3. 4. Normal Strain in the « and7§ directions.

If the points O & P lie on the { coordinate line for the
undeformed surface, then they will also lie on the o coordinate
line of the deformed surface.

Define the nprmal strain in o« direction;

4 .
Asugsi Soe lefﬁ A8 ~> 0O
Now from the first quadratic form of the undeformed surface;

olsu= Adx

And the length from the first quadratic form of the deformed surface;
Ve
o= AV +260) X

Expanding by the binomial theorem and linearizing;

AL = A7+ Q)X

Hence;

/
4 Sy—ASy (/m/"/‘A., ——~o = Cyy
A S Sw
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It is obvious that the normal strain in theledirection will be
given as;
d -
S = AS -4 d/m/£
78 —"rs;-% afe—>0

3. S. Shear strain in the <X-48 directions.
[ 4

As pointed, the tangent vectors on the undeformed surface, the
ya andé’ vectors, are initially orthogenal. As the surface deforms,
this condition is no longer realized. The shear strain is defined

as the tangent of the angular change between two initially orthogenal

- 4

lines. Consider then the plane of the 7y and '1-; vectors.
- !
Te
@
1) @ .
v - T

Hence;
shear strain = 7an @

But if the angle is small enough as is assumed in the present theory,

then;
Tan @R @~ Sne
But
Swne=(3seé
Thus;

Case 22 shear strain

-— -t
Since 77 and 7'; are unit vectors, then;
-/ -

(Gse = 7;-‘7,;/
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As has been shown in a previous section, for curvalinear coordinates

CBSG: __E_.
VEG

Substituting;
EG= A8 +280) (742 e,«)
F= 44£3€374

Expanding;

N - ¥
VEG \/ / +2’[e“‘°‘*796)'

Linearizing by the binomial theorem;

Qs 0 C = Shear strain

3. 6. Curvature Change and Torsion Expressions

The components of deformation, &, , a,a; eﬂﬁ measure the change
in length dimensions but do nothing in describiag the altered shell
geometry. These latter quantities are measured by curvatures and a
quantity called twist which as yet has Fo be defined. Consider now
evaluating these parameters.

3. 7. Curvature Change

The curvature of a surface in a particular direction has been

shown to be;

ke I - LG +2M@NEa)+ NG
T E (0e)"+ 2 F(d ) (d6) + G (d8)™

Before the above expression is applied, one important thing should be

noted, The radius of curvature of say the o( coordinate line was
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‘shown as;

\
m N
R\ /
*edo/
\
\\//
Now according to the derivatives of the unit vectors F?* was chosen
positive as shown, that is, the curvature was opposite to the positive
ﬁ direction. Now in the definition of the curvature of a surface,
the direction of the normal to the surface N and the principal normal

N to a surface curve were used. Letting k;‘ be the curvature of the

surface and }Q(: the curvature of the curve,

HJN

Now in the shell assumptions used, the principal normal to the line
and the normal to the surface made an obtuse angle with respect to
each other so that 90;,.,}'_4/80? But if the above definition were

used, then k,s' would be negative, whereas it actually was chosen as

positive. Thus; for the sign convention;
/

= e c———

r

3. 8. Curvature Change in the o¢ Coordinate Direction.
]

4
The curvature of the deformed surface,é(skf;, in the o¢ coordinate
o
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direction is defined as (7@=0 )

ke =02 R (4 + A
/??7;h259u)&§a02'

Simplifying and expanding the denominator by means of a binomial

series;
b= [ A Ot Qo)+ T (- 2€)
Bxpanding;
A= B+ byt +rly ~2 g Gt
Hence;

-—/———L—: éu/"é :4(—'4 &
Ri” Ra T e

By direct analogy, the curvature change in the,&? direction is

given as;

-4, - L = —ke €
ﬁ; ;;5 “$5' ée 79

3. 9. Torsion or Twist

The first and the third coefficients of the second quadratic
form have been explained and it was pointed out that these quantities
represent the curvature changes of the surface from the deformed to the
undeformed state. The problem now concerns the second or "M" term and
its physical explaination. Note now that if principal curvalinear
coordinates are not utilized then the first and second quadratic forms
of a surface contain this middle term. Hence this term is not just

limited to deformed surfaces but is connected to non-principal
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coordinization of surfaces,
Consider now a surface on which exist e(and/s coordinate curves.
Assume that these curves are not in general principal curvalinear

coordinate curves. The situation appears as shown.

The points P and Q are spaced an infinitesimal distance apart.

-
Consider now the angular displacement of the vector 'I,; in comparison

4

with the vector ‘l-; . Since ‘75 and ';l-; are both of unit length, then

Sine = ;,x'l_fgl
?ince the vector "IB varies continously from point to point on the
shell surface, it might be expected that in general there is an
angular displacement. If now the points P and Q are chosen infini-
tesimally close to each other, then S »0O and hence for small
displacements, SmeTe .

If principal curvalinear coordinates were chosen for the
ando(¢/6 coordinate lines, then To _L:T; and further APo< AR .
Bffectively, this would mean that the only infinitesimal rotations
allowable for 'T;/, :)';/and r—)’vectors in going from P to Q would
be rotations about the M axis. Rotations about thet and"T'p axis

would then have to be associated with non-principal curvalinear

coordinates for the ¢ and/e curves. It is in fact, this rotation
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that is now desired. 1In order to preclude the vanishing of the angle
as Q-»P, the result will be divided by the distance between P and Q
namely oS
Consider then the component of rotation along the ol coordinate
axis (in the “f; direction). This quantity is given as;
- —
(o' xT3). T
IS
But if '7; is continuous, then;
-/ -
-1;=7;,+3_Iga'°<+.--
oA
where now only first order differentials will be used.
Substituting; .
[:(%§+-32§<3;>x7; . Ty
o4 T
of

and expanding and further noting that 'T;x:l;=0 , the result becomes;

OCE,

But from vectors, it is found that
(GxB)-T = A(Bx7)=F.(6x4)

Hence the above expression may be written as;
g’Q:/g_Q af.(—r“x%ﬂ
ge. (as/lok " P

TaxTs = 2 O%) = -FAl(ds) 7
Bk g ()

But

Substituting;

b . - () fg‘s_/-"(gga)

ol @) 1%)

However;

0T = 2 (35)\= oK
5&'9 a(x(as;, 5,;_3«7’6
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and hence;

Q/§=..fo¢)f \/~_—_'a°g/e°)

Cﬁﬁd 6BSL) aﬁy)
A= P g dS VB ; olye VE e

J

aow;a )
-~ VEG-F* pm
dsa =

Note now that the above expression can be directly related to the

But and thus

non orthogenality of the coordinate curves. Letting the angle
between ‘]_'; and "T_"; be ¥ , then as previously found;

©Gs¢= L /Es

and hence the above expression maB be written as;

S (= Sng) M

Consider now evaluating the above expression for the deformed

surface; now;

E= A"(:-:-ze,‘.‘) ; G=Bz(:+2.ef,p)
Sin¢= \V71-Q% = I- $4Cuz +ev- &= 1

L [? (é§*4' i]
V&EEa /4[3 b/7::5%§::_-—_ﬁ AL /@6

o (ore
5,3%( AB EI & +/qe3JM

But M is involved with displacements and their derivatives and so

are the expressions for & and ﬁ%@ . Hence for linear results,

b - LM
S A8

Substituting for M;

B -V
O/,Svo(
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Note now the symmetry. Since W is symmetric in A , B , « andp
then;

de _

dvs;g

Hence the same angular rotation of the vector g about the'TE axis

is experienced as for the vector T; about the'fi axis,

3. 10. Peterson-Codazzi-Gauss Equations (Compatibilit
When dealing with the undeformed surface, or more properly, a

surface defined in principal curvalinear coord{nates, the first and
second quadratic forms of the surface took the form.

T= A*(del) + B (e

IL= koA - b B
where in the second quadratic form, the sign of kg‘and %ﬂ has been
chosen in accordance with the derivations subsequently used (i.e.,

hs = -A ‘(M+73) ). Now the condition on the unit vectors was that;
q

% _ oL . o7 _ aI . 2
aid,eq@awa;q‘e @Q?‘Ja“aiadga %ﬁ(

and the result was the three equations;

,.B__(b «A) =
d/e
%(g‘, B)= k"ax

3_ 3 2. A = - kyks AB
k) S (55 b

The first two of the equations were called the conditions of Codazzi
while the latter was defined as the condition of Gauss. Now these
conditions may be looked upon as differentiability conditions, but

note that they are involved with the coefficients of the second and
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quadratic forms of the surface. Thus these conditions yleld the

relations between the coefficients of the first and second quadratic

form of the surface.

Consider now a surface parameterized by some X andle which

lead to arbitrary o andlg coordinate curves. It is now desired to
{

find the relations between the coefficients of its first and second

quadratic forms. To do this, the conditions on X, 3' and k vectors

cannot be utilized since in general, the curvalinear coordinates are

non-orthogenal. However, remembering that

3 . - . =ZIxT
F% 0 Fxg o B

then it 1is evident that cross derivatives of the unit vectors are

A=

really conditions on the third derivatives of ji . Thus for a general

shell, the compatibility conditions take the form.
_a.(a’ﬁ) _ 2 /a"s:>
Fo\ St>/ 8ol \ Fx s
EY ( .a_‘£.>= 3_( EWY )
o a"/e" d/d am;e

a2 a_5>=.a_ R
d/e ot o d/e

where again;
A= ! ox Ik
n= X
VEG-FZ! ( x 2,6
Now by applying the above conditions, it can be shown that nine

equations result, three of which become distinctive. These equations

are given as;

E Eul
(Ec-2FF +GEX Le-M)-(EN-2FM+GLY(Ea RN+ | F Fa M| = O

G Gu«N

£ E, L
(E'G-Z-F“-GE')(MF—NA—(EN-Q.FM+GQ(5—G.D+ F f;',pM =0

G Gg N
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)

(1 AN

(|ChoutBe- 4 4B« gD |0  KE 4O

< (’?_9"/'&@“) & F o l-l48 E FlL
%:G%e. F e .2£G& F G

W . </

‘g
= (Ec-F%) /Q,,/q(e
In the above expressions, the subscript of a letter means differentiation
with respect to that coordinate. The above equations are termed the
Gauss, Peterson-Codazzi equations and do reduce to those previously
defined for a surface parameterized with principal curvalinear
coordinate curves.
Substituting;
E=A(1+26x) ; F=ABCug ; G= B(1+2€00)
Le-A*[kuirudedki]; M=-ABY ; N=-8"[ko(ireye)+ks]
and linearizing the equations in the deformations, only three inde-
pendent equations result., These equations are termed the compatibility

equations of the deformed surface and are given as;

> _2988 88 e BOCu .38 Qe
9L -232 7+ b 2 ~’€+bp[- 5L *ox

A 3£§Q-+ jﬁ%(}k;-A@g)_zaé__
—ACux . OA (G- & =0
A5 (%)
B2 ) -G -AQY ~ 2D ks 84 € A )
245 4 98 (A5-4) 2 2947+ 4o 24 e + b 35,,,76,4_9,,6

_B3Cy _ 98 (Q-C )j-_-o
o =il i

A8 ., L ) - Cuu)-p. Oas_S
bokics bk L B L6 240+ 38 e - 2%e-2e]

Q. L|AOC+ A (Cuu-Se) -B. Qe -28B © =0
Kk ‘-7—6“-‘/'3(“%6) 2 ox’ O “’fj

9% B



3. 11. General Summary and Conclusions

1. Undeformed Surface

a. First and second quadratic forms

I= A"+ SlCd‘e)L
TL= -k A (0> ks B (de)"
Compatibility conditions

| aa_(kpe) ke 38

a/e 3 (kuA)= bﬁ

[a (F\ ),-kdl;dAB Conditions of Gauss
o

2. De

a,

b.

formed Surface

First and second quadratic forms

T= A% +2€.) @o) +2AB Sue Ga)gg)-f =2 ( +2epp3 (c d(@*

TTm-p? [k @A JED =248 G Ga)-8 Tk (+qareslifed”

Compatibility conditions

B Ok + OB (hd-Kl)-AO— 2R 1+ ke A, +k¢[Aae
5§+ao< 8z J/s 48 ésa;e S 7@"‘

+0A @y ~B IS4 - 2B (& -e,,,,QJ:o

98 St X

d4L, + OA A _BOY _29B 4+ kO 8
Ag/_s”g/g&«,,/p) 22987+ k38 aerha[ B3C,
o8 ~A J&w - BA - =
+a°( Cua d/eau d/e(&d %e)] o

hesttheses ol B B2 Ges2 B

S

-4 A Qg +u_—-J—'435L«4méﬂ£@L ‘gﬁb B‘aeﬁa GHQ:Z}==C3

Lf%e @e' 36 2 I
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C.

Displacement strain and bending relations

r S 4+ SA w
(S q ng gsd/e’zf-t»k

E’U=L3JD.' _'_.3844+bw'
pe B 98 V2B 9 g

e—.«p- )4-_3-8

Bd/e A

=-L /L ._'.. QAW | 2 (R )+ Ra SAr
A Aau.(n /) AB23e A B R

Aa=-L 21 o) L 3B w4+

576 Bd/e
'r--ca_uc_l.aéw:.'_aak AU) 48B3 (O
L™ aB aud,e+e‘si,%ao< AB? 3%2,26“' '?‘49 a)' g a%(e)
Curvature change and twist of the middle surface.

Let k., hp refer to the curvatures of the undeformed
surface and these same quantities primed refer to the

deformed surface.

'Qg/- Ry = /d(-'éoc Cuox

\ Ke'~ ke =”¢"§§ g6

Let © represent the angular change in orientation of
two lines on an opposite side of an element and let this
angle be projection of the resultant angular change along
either of the two coordinate axis. Then;

o6 _
as -
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Conclusions

When the first and second quadratic forms of a surface are known
and when the Gauss-Peterson-Codazzi conditions are specified, then
the theorem of Bonnet states that a surface is uniquely specified up
to its location in space.

In dealing with a deformed surface, it is tacitly assumed that the
undeformed surface is completely known. It has been shown that for linear
theory at least, the first and second quadratic forms of the deformed
surface may be completely specified in terms of either the three dis-
placement functions u, v and w, or the six deformation functions &,

QFP . eﬂf AN 4% ,Y . If the latter set are used to “specify the
deformed surface, then the Gauss-Peterson-Codazzi conditions yield
three differential equation interrelating these quantities. Thus it
is seem that whichever method of deformed surface specification is
used, that surface suffers a third degree of indeterminateness in
that three functions may always be chosen arbitrarily to define i;s
configuration.

A given thin shell structure when subjected to a loading system
will deform in a prescribed manner. Since the shell may be considered
as being made up of an infinite number of laminaes' or surfaces, then
each surface will deform in a prescribed manner. The problem is to
find the deformed configuration of the shell and hence each of its
laminaes. Surface study alone does not have the complete key to the

problem since it has been shown that such a study leads to a third
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degree indeterminateness. If now three additional equations could be
found relating the deformation functions or displacement functions,
then the surface configurations would be completely specified.

Since it is a loading condition which causes the-deformations,
it would seem logical to presume that the additional equations will
be found when the load condition is related to the condition of state
of the shell. If the shell is statically loaded, the condition of
equilibrium may be used or if the shell is vibrating, the dynamic
equations may be utilized. However, no matter which state the shell
is in, it is the shell and not the surface that will be considered.
Hence in finding the additional equations to predict the deformed
configuration of a shell surface, the thickness of the shell must
be considered.

Remembering that a shell deformed surface was of third degree
of indeterminateness, the equations of the condition of state of a
shell must be reducible to three additional equations for a surface.
However, the conditions of state will yield either the displacements
or deformation functions for each point within the shell thickness
and hence what is needed is to find the variation: of these quantities
with respect to some arbitrarily chosen reference surface within the
shell.

Consider now the situation. In order to define completely the
configuration of the deformed surface and hence shell, three add-

itional equations are required. However if these equations are
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to be derived from the condition of state, then the variation of the
deformation or displacement functions must be assumed. If the assump~
tion on the variation is by chance one that is true for the parti-
cular shell geometry, edge conditions and loading, the equations
governing the shell will all be satisfied. In practice however,

this type of a guess is extremely rare.

The assumption that is normally used in shell analysis is the
Kirchoff hypotheses, on extension of the 'plane. sections remaining
plane" assumption used in simple beam bending theory. The condition
prescribes the variation of displacements through the shell thickness.
Physically, the assumption is an appealing one for thin shells,
However, it is an approximation and its use introduces an error into
shell analysis. The magnitude of this error will be subsequently

discussed.
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CHAPTER IV

4. 1. General Discussign

In the previous se¢tion, it has been shown that the study of the
deformed surface ultimately leads to a third degree of indeterminacy
in uniquely defining this surface. That is, three parameters, either
the three displacement components, u, v, w, or three of the six
deformations, €, ; %6 5 e,,e ,_,@,ﬁ?’, may be chosen arbitrarily with-
out violating any of the precepts of the differential geometry.,
However, a thin elastic shell subjected to an external loading,
surface or edge in nature, will deform in a unique manner. Thus
a shell structure does not possess any indeterminacy.

If a surface can represent a thin shell structure, then additional
equations must be available whereby the deformed surface can be
uniquely specified. From the viewpoint of uniquely defining the
deformed surface, the number of additional equations must be three,
The problem then is in finding the scource of these equations.

As has been mentioned, when a shell structure is subjected to
a loading, it assumes a unique configuration. Hence the laminaes or
surfaces which may be considered as making up the shell also assume
unique configurations. Thus load and deformed configuration of a
surface are intimately related. Now the indeterminacy of the deformed
surface has been concluded on the basis of differential geometry.
Nowhere has there been any mention of a shell structure let alone
an external loading. Thus it must be concluded that the additional sought
equations which will ultimately define the deformed surface uniquely
must be related with loading on the shell structure and hence with the

stress state of the shell.
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4, 2. Stress State Within A Shell

Consider now a thin shell structure subjected to some external
loading. Within the shell, each point will be subjected to a general
stress state consisting of the six components of the stress tensor.
In order to picture this stressed state and the assumed positive direct-
ions of the stresses, assume the following. Let the middle surface
of the shell be the reference surface and let this surface be
parameterized by some o , f3 coordinates. Assume that the coordi-
nization is such that the d~andf3 coordinate curves awe principal
curvalinear coordinate curves of the middle surface. Assume further,
that the deformations are sufficiently small so that the stressed
state geometry of an element of the shell may be approximated by
the geometry of the unstressed state.

Let Y be the distance measured normal to the middle surface such
that the ogﬁ%*/ coordinate axis form a right handed system. It is
obvious that ¥ is collinear with and in the same sense as the k
vector of the orthonormal triad of ;, E, k vectors of the middle
surface. Consider now forming an element within the shell by means
of three intersecting surfaces. Let the first surface be parallel
to the middle surface such that the distance Y” between the two
surfaces remains a constant. Let the second surface be normal to the
middle surface and pass through the‘ﬁ3 curvalinear coordinate curve.
The third surface also will be normal to the middle surface but will
pass through the & curvalinear coordinate curve. The resulting
element and the corresponding stressed state are shown in the sketch

on the following page.
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R«

The body forces, p_, ee, P, loads per unit volume, are shown beside
the sketch in order to minimize the ¢lutter.

On the basis of the differential element shown, and assuming

a static equilibrium, a set of relations between the stress components

could be derived. However such a set of relations would not prove
immediately fruitful. Calling to mind the discussion at the begin-
ning of the present chapter, it was pointed out that additional
relations had to be found in order that the deformed middle surface
would be uniquely defined. Thus the sought equations must be
surface type equations. The relations that would be developed by
considering the equilibrium of the differential element described
would be volume type equations and in order to prove useful in
defining the deformed middle surface, would have to be transformed

to surface type equations.

4. 3. Stress Resultants

Rather than transform the equilibrium equations of an infin-
itesimal volume element into surface type equations, it is a
simpler act to start with a surface element and consider its static
equilibrium state. However to do so requires that the stresses
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which exist at a point in a three dimensional medium be transformed
to some equivalent force state acting on a lamina or surface. Toward
this end, the concept of a stress resultant will be introduced.
Consider now a differential element of a shell but one whose
thickness is equal to the shell thickness & . Assume that the
element has been formed by intersecting cutting surfaces such that
these surfaces are normal to the middle surface, pass through the
principal curvalinear coordinates of the middle surface, and further,
are such that a straight line segment normal to the middle surface
at any point on the principal curvalinear coordinate curve would be
contained in this cutting surface. Such a generated element with

its dimensions is shown on the accompanying sketch.

Middle Surfice

Note that the dimensions of the element are measured on the
middle surface and the boundaries out from the shell are normal to
the middle surface and consist of straight line segments. Thus
knowing the middle surface dimensions of the element and the geometry
of the middle surface is sufficient to completely describe the
element. Now every point on each of the four lateral sides of the
element is subjected to a stress condition of the type previously
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mentioned while the outer and inner surfaces of the element (which
coincide with the outer and inner sides of the shell) are subjected
to assumed known load conditions. The stress distribution and the
external surface loadings will cause the element to be subjected to
a force condition and if the shell is in static equilibrium, an
element of the shell must also be in static equilibrium. Thus the
resultant force and couple on the element must be zero.

Consider now the resultant forces due to the stress condition
on the lateral sides of the element. Since the lateral dimensions
are of infinitesimal length, then within first order approximation,
it may be assumed that the stress variation in the or’KB direc-
tions on any of the lateral sides may be neglected. Howeve; this
does not preclude the stress variation in the ot or/5 directions
between any two parallel lateral sides. Since the element thickness
is finite, a stress variation in the Y direction is assumed on any
of the lateral sides.

Define the stress resultants as follows

$4 s
.r:T;°L= ouy Cleky)dy ;T;;= CY-Y(]+kgsdv'
AR Y:
A &,
—’;\/9‘ J:/:);({e (H—%GYHY Maa= Iaz'wyﬁ«;-%v)dY
SA 82
Tay= J:?;w(wéeﬂc/v Mu}e= st“pYG”%ﬂdY
]5-/2_ A
'T/;H: JF % Gehody Mga= L/fé’e v C+hor)dr
_8/15/,_ o
L‘]/g/@= :/; Zﬂpﬁ%ﬁ)dr Mau= j /Lo;}evﬁ%,,v)cfr



Note now that the stress resultants Tij have the units of force per
unit length while the stress resultants Mj ; have the units of couple
per unit length., The physical meaning of these stress resultants
can be shown as follows. Consider for a moment finding the result-
ant force normal to the lateral side for which the tangent to the

oA coordinate axis is a normal. On that side, the only stress
which can yield a force normal to the area is the normal stress Oy .
Hence the problem of finding the resultant force is reduced to
finding the force resultant of the normal stress distribution i« .

A sketch of the lateral side is shown below.

”’III'II"".
4 L2

Y 2

The length of the middle surface is E&#B and the curvature of the
middle surface in the/S direction is assumed to be kﬁ . Since the
A and f3 coordinate lines are assumed to be principal curvalinear
coordinate curves, then there is also associated with the surface

a radius curvature Eb which for the infinitesimal element shown may
be assumed to be constant. Now the element has been formed such
that the sides shown are straight lines and normal to the middle
surface and hence forfs being a principal curvalinear coordinate
curve, these sides, if extended, will intersect at the center of
curvature for the surface. Because of these facts, it is now

possible to easily express the length of any curve on this lateral

4-6



face which is paralle}l to the /6 coordinate curve. Thus for a
curve lacated a distance Y agbove the /6 coordinate curve, its

length is given as;

C‘,S;BCY)= (H- bﬂﬁ 8&,6

The force acting on the shaded area due to the normal stress
Qua 1s given as;

s Ouu IS dY

Hence the force acting over the lateral side is the integral of
this quantity over the lateral face. But notice that the stress
variation Uxe is assumed to be a constant is the /5 direction for
this surface since its dimension in that direction is infinitesimal.
The same will be true for the quantity 8 and the curvature ‘35 .
Thus in intergrating the force expression the only variation that
need be taken into account is in the Y direction. Substituting

for c/S' 3F
e A

8
E:o(: BCI(QJ) O;ok(l‘f“/?,eY)dY
-8
Now the force per unit length of the middle surface will be given

as;

4
':a.(d = f O;\ (f4' Y) dY
Bdp ey "

But this is precisely the stress resultant "Tgay. Hence it may be
concluded that the force stress resultants, Tij, represent the
resultant forces per unit length of the middle surface on the lateral
sides of the element.

Considering again the lateral side pictured, if a moment

summation were taken about a tangent to the /8 coordinate curve of

4-7



the middle surface, the result to a first order of approximation

would be; 84

Bd{sf %Y(H-‘?pY)JY
_6/2_

Thus the moment per unit length of the middle surface would be the
stress resultant M. By analogy, the moment per unit length of
the middle surface about the ok coordinate curve of the adjacent
lateral face would be the stress resultant Mﬁg; The possible
variation of the shear stress O:.(e in the ¥ direction causes a
moment about a normal to the lateral face. If this normal is
placed on the coordinate curve, then the twisting moment per
unit length of the middle surface is the stress resultant Mq@ .
Note that there is no twisting moment associated with the sheer
stress Q4. since the only assumed variation of stress on a lateral
face of the element occurs in the ¥ direction.

The inner and outer surfaces of the element are free surfaces.
»_Hence only loading or stress condition on these surfaces is assumed
to be prescribed. Assume that the resultant of the surface loading
will consist of three components of load intensity, (?d s Cfp , CKY .
These intensities are presumed to have dimensions of force per unit
area of the middle surface.

The use of stress resultants on the element of finite thick-
ness & is statically equivalent to the stress distribution acting
on that element., Further, the direction of the stress resultants
will be dictated by the tangents to the o(and ﬁ coordinate lines
and the normal to the middle surface. Since these stress resultants

are calculated on the basis of middle surface dimensions, then so
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far as equilibrium equations are concerned, the three dimensional
element may be replaced by a surface element of the middle surface.
Thus the state of equilibrium for a shell structure is finally
reduced to a surface problem.

4. 4. Equilibrium Equations

Consider now an element of the middle surface subjected to
stress resultants. In order to minimize the complexity of the
diagram three sketches will bé used. The first will be a sketch
showing the dimensions of the element, the second will show the

force stress resultants and the third the moment stress resultants.




In wrifing the equilibrium equations for the element, a number
of things should be borne in mind. First, that the surface para-
meters A & B as well as the stress resultants are defined at the
point 0. Secondly, that the dimensions of the element change
between opposite sides. Further, that the magnitudes of the stress
resultants change and finally that the directions of the stress
resultants change. Now the force summations will be taken in the
I, E, and k directions and the moment summations will be taken
about the axis coinciding with these unit vectors. Positive moment
and force will be said to exist if they are in the same directions
as the unit vectors I, E, and k,

To account for the changes in directions of the stress
resultant, consider using a unit vector aa; where %&; will be a
unit vector located at same position and in the same direction as
a corresponding stress resultant. If the components of the vectors

ﬁa? are known in the directions of the triad of vectors I, E, E,
then so also will be the components of the stress resultants. To
account between the back faces and the front faces of an element,
the subscript 1 and 2 will be used. Thus the unit vector acting
collinearly with the stress resultant (74 + %%%%Q) will be
designated as EL“Z while the unit vector acting collinearly with
the stress resultant 7, will be designated as 5L~1 .

The components of the unit vector can be easily derived from

the derivatives of the unit vectors i, 3, and k. As an example,

consider the components of the unit vector 5;,& . Thus;

oty = A+ gg(l-o/ou ;%; %
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Substituting for the derivatives of the unit vectors,

uny= <+ (% 38 ofo- éé?go&)f—@ﬁa/dl

Table of the Unit Vectors

) i j ‘ k

et ' / N Vﬁ?;&( 3% —

77w, - Yo "Jg’é« A / ‘ -4e8 945
- Rxr, - bo B 9% !

e / -a O%AJ% —‘u”a’%

Nse: Y8 %% %%, / -

hev, koo A Y5 - /

e, ./ - %5985+ % 9559 ko A T

Dves B aﬂ@"%{-/% %ix T4 / - tkg 8944

vy, bo A d% éﬁ 8 d’% /

Puaz / Yo O%n K5 - % s - b AAY

Twss | %%%%e 0=~ 1 % 9 / ~ke 8944

Hotra éqﬂJD( afe a8 dﬁé /

sel 2 / % °%oude- %8 “Phe P WA
_ nex % %6°% - % %ol / — kg Bol8

Hevs boe A C’% ke Bole /

Summing forces in i direction;
Ficcs 3da) o+ B2l e 35 )6+ 29 4] 2w 38 4004 [ S )
# (B 38 o)l (kA (s 500) (e 3298) o - [Fe + STc) 4 + ki) o]
(6% S 38 ) o[ T e adog) {racn]]-[ace
*(6 %) -[ad ] (hA%) - (7)ol [+ (e Xode ] 3B 0) .
+[@aad@I)] + [fyp) (AdW) (80’,6)]( % 33 Y- L2 ). (G okl
(ked 9%) = 0
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Expanding, simplifying, and dividing through by Ad&d,e and

passing to the limit as Jd‘?‘O and t{@-r-o , the result becomes
L 3BT+l AT OATog —_L_ 9B Tg
aB 5% o1 AB 98 *@hea,e"?‘s AB ox T

B
+ EN—T:KY ""i‘x =0

The remaining equilibrium equation can be found in an analagous

manner. The resulting equations are given in the following summary.

4. 5. Summary of Equilibrium Equations

A 2T d%(m,sm daﬁ—r g g%-’;ép]*l?uﬁv*q«= o

—L =

A5 55 W2 8T+ 38 T g T [ +Tor gy
[é_(a'r;v)ha.m'r@vﬂ kiTao —keTge +qy =0

_LéL_%@%ﬁ)+aag((eu¢)-ggm.«+§5?M,,ﬂ-1;\f=0

— G ot ¢ +£L o) - + - lxy ©
AB[%BM Xdﬁ(AMp)Ssrv),/s %?M,,FJ )

—r:(/g—"l;gq + quq/e - &(3 Mg =0

—

/
4, 6. Commentary

The six equilibrium equations are involved with the undeformed
surface parameters, A and B, and with ten stress resultants. Note
that unlike stresses, neither the force stress resultants, ’f;(‘ and
"T:ao(, or the moment stress resultants, H“IA and Mg, are equal
to each other unless the curvatures of the middle surface in the

o and ﬂ directions are equal.
Initially, the idea behind the introduction of the equilibrium

equations was to bring about the dependence of the deformed middle

4-12



surface on the external loading. However, as matters presently
stand, the equilibrium equations further comblicate the problem

in that they introduce ten new functions, the stress resultants, but
are only six in number. If the equilibrium equations plus the
deformed surface study uniquely define the deformed middle surface,
then that surface, on the basis of the derived results, is
analytically indeterminate to the seventh degree; three degrees
from the surface study and four degrees from the equilibrium
equation study.

Inspection of the defining ;quations for the stress resultants
show that these quantities are dependent in integral form on the
stresses within the shell. Since the material is assumed to be
elastic, fhen the stresses may be converted to strains and hence
the stress resultants become dependent on the strain variation
within the shell. If now the strain variation with the depth of
the shell, Y, can be found, a solvable system of equations will
result which will completely define the deformed surface. That
this is so can be ascertained by an inspection of the equilibrium
equations. Consider assuming that the strain, at ahy height v
above or below the middle surface can be found as a function of
the strains of the middle surface and the distancem Y . The
stress resultant expression could then be integrated and the stress
resultants solved as functions of the middle surface deformations.
Hence there would be a total of nine equations and nine unknowns:
(the strains Cuv Gh* » @y, would enter into the system from the

equilibrium equations).
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The problem of the strain variation within 2 shell can be and
has been considered the major problem in shell analysis. It is
as yet unresolved in that exact expressions which are convenient
to problem solution have not been obtained. However, approximations
to the true variation abound in the literature, The most
important and most frequently encountered approximation is also
historically the oldest, It was first used by Aaron and then
Love in their shell theory development and s an extension of plate
and simple beam bending theory where it is assumed that lines or
planes originally normal to the neutral surface remain so after
deformation. This hypothesis is known as the Kirchoff hypothesis

and will be introduced in the following chapter.
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CHAPTER V

5., 1. Kirchoff Hypothesis and Displacement Variations.

The Kirchoff hypotheses are three in number. Stated briefly,
they are as follows.
i) Line segments initially normal to the shell middle surface
remain so after deformation.
ii) Line segments initially normal to shell middle surface do
not suffer any extensions or contractions.
iii) Normal stresses oriented in a direction normal to the shell
middle surface are small in comparison with other stresses.
The consequences of the Kirchoff assumptions will be discussed
later, For the moment, note that ii) and iii) are contradictory
for the general shell problem in that the two assumptions state that
a condition of plane strain and plane stress simultaneously exist,
Now the Kirchoff hypothesis (more properly, the Kirchoff-Love hypotheges)
are a direct extension of plate theory where it has been found that
the plate problem like the beam problem is in approximation a plane
stress problem, Hence as might be expected, the thin shell problem
- should afso be a plane stress problem. To maintain this assumption,
and to obviate the contradiction of simultaneously assuming plane
strain an& plane stress, consider relaxing assumption 1ii). ansider

now an element of the shell middle surface before and after deformation,



—

Now by assumption, JQc;oz uiﬁwﬁ}wﬁ;. The problem now consisits of

finding. Rplp -
Consider now the vector equation;
Reptp=Rgr g+ YT “ vk
where n' is the normal to the deformed surface. Hence;

Rpip = L L+vT ¢ (W-¥) T+ v (Fax )
'(TQ’*T')'

where ﬁﬁ; and 'ﬁ; are the tangents to the curvalinear coordinate
curves of the middle surface. But as found in section dealing with
surfaces,

(Cox ) = (kg 2ud) 24 (hyv-L2u) 7 B

(T x T B 9e
Thus the displacement vector of point P becomes;

o= [;L +( kit — A’%sz +Er+(%g1f-é-§'u6r)vj; + Ecr +(Y:Y)J k

Note now that if the Kirchoff hypothese were all in force, the
Y%y and the above expression would be the one more commonly en-

countered, namely;



7
Consider now the expression for v . Now the contraction of the
normal is due to the variation of the normal strain where from

elasticity considerations;

duwr

yy= ——

oY

Thus the expreésion for"r'nay be written in integral form as

Y’= Y+ fevvdy

©

Now without proof, note that &, in the unloaded state must be zero.
Furthermore, the strains _, e%’ ,Eae were expression which in each of
their terms contained either a displacement term or its derivative, Hence
it would be reasonable to expect that €, would be an expressjon sych that
each of its terms contained either a displacement term or its derivative,
Hence, ypon integration with respect to Y this situation would still be

true, This can be most easily seen if &y is written in power series as

evv-£(ll vuf)-o-f(u':rur)w. e -+ j’ (u, uu.r)Y + - -
Returning now to the expression for)%;,, note that linearization in the

displacement functjions leads following resulting expression for the dis-

placement vector;

Rpzp® [;L+(L,1L iraﬁﬂ9i?x.4-[}r+(1?1ﬁﬁ__3 '):]é.+[guﬂ+ €§YCLY ke

Letting u(¥); v(¥); w(¥) represent the displacement components of a

point away from the middle surface, the final result becomes;

26 = 1 +( L AFTEN %u_x; Y VU= 1r+(l751r_8 dp)v w™)= u)‘+f€wdy

5. 2. Commentary

The Kirchoff hypotheses allow a solution for the displacement
variation through the shell thickness. Ultimately, this displacement

variation will allow an expression for the strain variation and hence
5-3



a relation between the parameters of the deformed middle
surface and the stress resultants. However, the Kirchoff hypotheses
place some restrictions on shell anélyéis. Summarized, these
restrictions are as follows:
a) Inability to properly account for the sheer stresses
O,y and Cpy. The implication immediately follow}s that
the stress resultants'Za.and';;rcannot be solved explicity
b) Shell analysis cannot account for large normal stresses,
Crv
¢) Introduction of a basic error of magnitude (k& ) which

cannot be improved.

The failure to correctly account for the transverse sheer effects
is a direct consequence of assuming non-warpage of the middle surface

1, it is shown

normal. In the report by Hildebrand, Reissner, Thomas
that by assuming ec’hand ePYand ©yyidentically zero, and further
assuming that the displacements are given as;

ALY = d + vk

= e v
the expressions for u' and v' result the same as was demonstrated in
the present analysis. One difference between NACA TN 1833 and the
present analysi§ should be noted. Whereas the reports assumption
starts out with essentially a linearly truncated power series in
Y for the tangential displacements, the present work shows that a

linear variation in the displacements is in fact an exact expression

once the non-deformability of the normal is assumed. Whether one



formulation is more precise than the qther is questionable. In fact
it may be that the non-deformability of the normal is in fact a
linear approximation to the truthlof the matter.

There are two impoftant conseéuences in neglecting the effect
of transverse shear, éne analytical and the other practical. From
the analytical viewpoint, the neglect of the effects of the transverse
sheatr stress will not enable fhe equations to be solved using this
quanﬁity as a variable.’ Hence as in the case of plates, the stress
resultants,7:,and'v§rwi11 be eliminated from the resulting system
of differential equations. Furthermore, the inability to. express the
transverse sheer stress will also complicate the boundary conditions
in that at a free edge it will Be shown that there are four inde-
pendent stress resultants rather than the five (i.e.,Tau , Tgy ,7;;,
Mey > Mar)

The practical implications of the neglect of transverse sheer
are perhaps more important than the analytical ones.‘ Thus shells
with large surface loads or rapidly varying surface loads cannot
be accurately analyzed using equations based on the Kirchoff
hypotheses. But more importantly, a class‘of shells not treated in
course but often found in shell applications, become subject to
large analytical errors. This class of shells are termed struc-
turally anisotropic or reinforced shells. As an example, consider
a shell made up of two thin facing materials and having a corrugated

inner construction, as shown on the next page.
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In this instance, the shear effects on the inner construction
especialiy in regard to buckling may be the single most important
factor in predicting its failure. Yet the Kirchoff assumptions
disregard these stresses and hence for this type of a shell, a great
deal of modification in the present analysis must be made.

One important and last comment on the shedr stresses. Through
the effects of these stresses are discarded in the analysis, this
is not to say that they will be assumed to be zero. In this respect,
thin shell analysis is inconsistent but no more so than ordinary
strength of materials in dealing with simple beam bending theory.
Perhaps it would be best to say that straight lines normal to shell
middle surface remaining undeformed truly implies that the effects
of the transverse sheaft stresses is small because of the'small
magnitude of these stresses, Thus once the shell equations are
solved and the stresses_calculated, the corresponding transverse
shest stresse may be calculated and in all events, it will be found
that its variation over the cross section will be parabolic.

The question of error always arises whenever an approximation
is made and hence in the case of shell analysis when the Kirchoff
approximations are utilized. A great deal of research has gone
into this question and the result is that the error is qf magnitude

( k.§ ) where § is the shell thickness and kR the largest curvature
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of the shell and the quantity ( k& ) is composed to unity. Fortunately
this error falls within the scope of definition of a thin shell. If it
is remembered that a thin shell is one in which the quantity ( k&) may
be neglected in comparison with unity and a 5% error in analysis is
tolerated, then the Kirchoff hypotheses yield an error of about 5% in
ordinary shell analysis.

4, 3, Strain Variation WIithin the Shell.

When a surface was deformed, the parameters of length deformation

were the quantities as strain and given as;

Cua= -A—% +is %va-lz,‘w

SQa=-L 2o+ L 2B uy ke

B d8 AB o

G- &2 (#)+ B 5(E)
Ultimately, the problem is one of expressing the stress resultants in
terms of either the displacements or the deformation functions. Hence,
what is first needed is an expression for the above strains for any
point within the interior of the shell. If such expressions can be
found, then with the aid of Hooke's Law, the stress variation may be
found and hence the stress resuifant expressions integrated.
| Now the above strain expressions are good for any surface. Since
a shell of finite thickness is made up of an infinite number of surfaces,
to find the strain variation it is only necessary to choose some
reference surface for which A, B,&,Lp and u, v, and w are defined and
then find the variation of these quantities from surface to surface.

Let the middle surface be the reference surface. Then;
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AT

A= ACi+kyv) ; Bone 8(]4-&',0 kjﬂe bp(r). _%)

Gi 4-bY)

ale)= A+ (h"'u"";‘;”%“r v
ol

V)= v+ (/a - L Bur\v
r° B a/e

W W+ je,,d«
°

Consider now substituting into the strain expressions. For

convenience, each of the terms will be separately handled;

1. Normal Strain ~E;“ 5

Substituting;
) e - .
G ™ tQ(?+|gp§¢3uJF;' (]h“i E%Eé) :] ;;gg?ZE}bﬁ+ﬁ.v)L_

G pv_J_%l? ]a_[AmL..Y\] b [m Ie,,JJ

Factoring out (14-52;) and rearranging;

g
Cua™) =G { A ?’{.4(. +g.£.((h..mv-_|. o (_L &n:)v..._z‘_d} __EA(HL 9]

+_§;:_é%12 &vﬂ- (.Lzs:)'ﬂ-ﬁﬁkvﬂ»fk.mh jewclv

gi-ﬂh(?+kﬂii] §2L4E;%Cakb\’

But by the condition of Codazzi, the above may be written as;

é% [A ﬂ+k..*rﬂ |3,QA_Y = (HI?Y)EA.
Substituting and grouping terms;
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= I [: 3 9A ry b, 1B Chysd) + ha 24
Y (|+k°pr){ A 8‘:4‘5‘5751” “ﬂ-'.[ e +A—g-qev

_ L3 /1 %w) L_0A dur }/4-42 f@.,YcJY
A 3\A Jok QBd/GJ)G

The first bracketed term is nothing more than the middle surface
strain while the second term is the curvature change of the surface

in the o« coordinate direction. Hence;

Q= (.‘_IE (P,u-i-/(‘\’)-i- fewdv

Ci+koo)
2. Shear Strain
The shear strain for the middle surface has been given as;

N AAS - E

An alternate form of expression can be derived upon expression as;

= °. 3 -
eﬁa B .& L A 4 L w1 9B v

/6 HB@G A dk AB I

The latter form of the shear strain expression will be more convenient
to use in deriving the expression for the shear strain variation.
Note further the symmetry that exists in the expression. For con-

venience sake, let

= L . L 9B -
G = a,'e aso/ve'u“ 3 G eaa'{eaaoc

Hence Q“P:Cl +C2 and for points away from the middle surface;

5%6C¥)= C:Ci)-# C;Cv)
Because of the symmetry hnC].and(zz, only one of these functions

need be evaluated, sayG Thus ;

Qe B—(LI:- ﬂﬁe PH@ A_'L%(t)_/ As(n«l-k‘v)(l-k%gv)[ pu gt _L%:)]
x 2| ali+kyy)
2 C ]




Expanding

Gen= B(H-g.v) d,e a(H—bF'bqa

— Chyut- %9 /éd}(_a_[A(H-hdvﬂ
44ER,+J{p%(l+ka\ 3%9
But aspreviously pointed out

ko) |= )
a_/'%[AG-o- 3_-] GH?Y)T"%

Combining terms, the resultant expressian for Cl ( Y) becomes,

L) & B
(b“A Ao AB(:+LY)(|+§.\)§§BG+L&YQ

U B S 3
Q6= Ci+-ken) [_‘é- 46] M (H-b.ar\ AB "6 _—‘
| i
+ a”?ﬂ [A‘:B,ﬁ)e Sot m&l’a 76
i VA

U R aAaw— _*l_OA_ JAJV
t LA A

Forming the resultant expression for (Y);

=4 191 A+t [LO_1 _dB~

e"P(Y) G+ VLA ao( AB d8 (m;,y) 8 dg AB d« J

A dur 1 _A_Iq,,u+_L 98 dur_ .J_a_qz-.-_u__a_(l,svﬂv

(u+k.m[ﬁ B c;e O AB AB*Jdx g8 AB
v L GA Bw'..__gu: L2 (i ]Y‘
(‘u—h ﬂ[ slau, d,e "AB a-ﬁ-‘se A'B d8 Jgor AB a«je"' huud
Consider puttlng the expression into a form involving only the middle

consider defining four functioms,

surface deformations. Toward this end,

as follows;



And thus the shed: strain expression may be written as;

Cugl= I (W0, +1¥) + 1 _ (w,+%
e Cu-k..v) DA +a+l;,v)(w‘ )

Now note the following;

e"Pz O, + Wy
Consider further the expressions for "ﬁ and ’};. Now note that the
terms involving w are the same in 7’ as well as ﬁ;_and further that
these same terms are identical with those occuring in the expression
for the twist 7 of the middle surface. The difference between'ﬁ’and
“q_and T lies in the expressions involving the tangential displace-

ments. Consider now dealing with the tangential displacement terms

only in the following expression

’)-;4—/&0[&3,_ - ky éAxL-;- 5@3‘34-&3,: -‘%g—

AB /e A O
Rewriting;
ﬁ*+kdw1-—hanaAu+&_éA+ 2 (Bks ko) - ke 28
BA‘#B AB 9ot

Or using the condition of Codazzi on the last term, and expanding the
third;
Yok =hoA 2 «u)a,ée_s_% )+ L9 (Bhyv - L 2 (Bhe)v’
i+ ket so)e(w A )75 %= AB;&(,@)
and hence;
Yt hawas kah B () 1ke B :zz:)
PT e k"sqe(ﬂ» 4/76/\57(8
Thus the tangential displacement terms are the same as those occuring
in the expression for the twist "« . The same can be shown for the
tangential displacement terms in the combination of W 4é§q. Hence;
W= N+ ks = K+keco,
Consider now taking a common denominator of the expression for

the shear strain.
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@*p(‘ﬂ = [(l JJa‘eQ (c L+ )+ 6 +hyv) @J,_-L 'T;_Y\J

i
Cl4+k N H-kpv)

Expanding;

edeYl i kdﬂi(g Y {( W +co,) {( W+ kgD + (g %‘Paﬂ] v+ (l ReY + L"rﬂ\’?}

Substituting and noting that

By W+ R = ke Y- kukgco,+ k- Ruksco,
or

ke, +har= Chuthdr-kiks €4

the result becomes

M= | +27V (kd -L.g :}
S e L P v+ [Cruthorv-hiboe ]

Y,

Or in altermate form,

Q= ('+k.~«)(|+k Y){e?e( -k, l,,v)a-z'?‘[w(gz@]]

Summary of Results
The strain variation through the shell has been found to be as

follows;

%“Cv)- 1 (E’.N+XY3+ __u__fewclv
H—b,(r)

X) = AaY 1yd
a9 m;y) (e +46) + Mmj;e v

A= _1 104G~ Y‘)-o-z’)' I+ (lhtg.')vv}
_Q;e (f*—kﬂ(i-rs.ﬂ{ * k‘kp [ ]
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4, 4, Stress Variation

The stress strain relation at a point for an isotropic body is

given as;

3
|

R
8
4+

3

eﬁg, 2{;;1& o%p

Since the Kirchoff hypothesis assumes a state of plane stress, then

(0 and the above expressions may be considerably simplified. Thus

solving for the stresses as functions of the strains, the result becomes;

o:(gf.’ﬁ_E_'_ (e.(“-ﬁ-‘l/e//)
Gg= £ (,,”ve«)

(11

= £ &
7" 20m) »

Oy = —EV- (m-\""o;éﬁ)

Now the strain expressions, €, , €;3and é%e, are known at any point within

the shell. Hence by substituting the strain expressions into the above

stress-strain relation, the stress at any point within the shell may be
obtained. Consider first finding the stress Q7 (v)

Substituting the strain expressions;

Oau () = E_ { [;Ghu .] [T v
G- L LGrky (u- v) (ivko) * (4+l7.v)

+ oy (%ﬂ] j ewJ}

The stress C%p(\() may be found by an interchange of subscripts with
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with the previous expression. The shear strain (Y) is given as;
2
V= E- G’ag(!-ke Y) 4+ 277 + (g &9)]
O;’, 204V | (14 ko) (1 + kg¥) (s+|@3(l4—k§,ﬂ

The strain &, (v ) may also be directly found by a substitution of

the expressions for ©,, (¥ ) and eFﬁ(Y)' Because of the complexity
of development, the quantity will be evaluated separtely in the

suceeding section.

§u1mnari zing;

o&u(*)— 7
G- "‘) CH—hﬂ (H-I%v (|+k,,y) (lrlsgv)

* [f%b:vs ”n’i—'f,fiujjo' *”“"]

Ao = c’.fz'i){[(wv) (iR +L#’v) =1
(H»l;,wr) (T,—ktv)] f GWJY}

M= & { (l—k.“?v’)e ] H—ﬁz.w )]]
200 LG+k DG+ ‘ﬁev G +b.nr)(+ ”57)
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5. 5. Evaluation of &+ (¥).

Now the expression for €, (°¥) has been given as;

Cy M = - (@) + e &)

Substituting for Og, (¥) and cr (v ) and combining terms;

S,.M= —_15_ [j(7+196;* +,(Wn;)e [:0440 4ﬁ;+(\a042?
Ci+ ko) (| 4-14/,*3 (ki) Ciakgr)

(20 ke o (+1)ks ]few dv
Ci+key) (bk%krﬁ o

Simplifying and rearranging;

Sse. Z—-E_kv. ]fedv_z.a.g_g_ a0
el G-v) H‘k,‘\’) (H- %) i C1-v) (':k-lY)*'(H-g,‘r)]

= [(H-Iw) (H-Ism ¥
Now the resulting equation is an integral equation of the
Valterra type. However, the equation can be transformed to a linear
differential equation in the following manner. From the definition

of €, ;

=

e,, = 9Wa

and hence;
v

W dv- w-w
0o dY

where w represents the displacement of the middle surface. Hence

the corresponding differential equation becomes;

dwed + | _Re & ]w’
dv Y +0-v) (u-k..v) (_u%l;r) (l‘V) +hkaiv) (T%;v)

- e‘(.f
l—V)[(-PI!.tY) (H—'yﬂ] (-v) [(Hk,,v) (H-ligr)j
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Thus the resulting equation is a first order linear non-homogeneous
differential equation. The general solution for this type of equation
is known. (see Agnew, 'Differential Equations", pp. 36). Thus

defining the quantities p (vy) and q (~v) as follows;

(v)= _ _éd_ +
325 [ma.ﬂ a%"':,,ﬂ]

= _ky W - [g.u.. e
(A d Forvaeadc g_n] e Laobd *'(Tfﬂm]

f/—V) [( i +—k,v) 4 H-"pﬂ]

the differential equation becomes;

Wt 4+ pO) ) « 7(r)
advyr
the resulting solution is given as;
~ ~

: +
- fpeodt - [padt o fpoards
wr= (e + € +fe g dt
(=

where CB is the constant of integration. Consider evaluating this'
constant. When Y=0, w (¥) = w. Thus; substituting, the res&lt
is
Co= W
Consider then evaluating the solution. To ease the complexity

due to algebra, the exponentials will be first be evaluated. Consider

then the integral

[perdt = o[ [mu) oot

Integrating,
j AFC{:)J'(: [( I+h (i + Apv}]
1-v)
Consider defining the mean curvature H and the Gaussidn curvature
K as the following;
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Then the above integral may be written as;

.
J)o)oCt)di Ln[H-Z Hv + K-v_]
0 G-v)

or more conveniently;
Y

“r 13(%)(J{:= (r []-f204v~+ﬁ<vf]

Ju "
[{22%}

Now the above integral, with plus or minus signs, enters into all

the terms with the exponentials. However, by a basic identity

ny
e =%

and hence; v
G
J; PAXML X
e = (/+2HY+ KY‘)

- j:f’&)dt 'c‘:',-'w

e = (i+2Hv +KY>)

Ultimately, what is desired is a polynomial expression in v .
Hence the above expressions will be expanded by the binomial theorem.
Now it will be abritrarily stated that the resultant expression is
to be truncated at powers of Y~ over three.

Consider first expanding the negative exponent expression;

- -
D) A 2, (2h v+ K
E+(2uv+a<v)_7 =1 (ffrﬁ (zuv+ kY [r,_ ][(7_;3' HY+ v
2-V) | Ruy+KY,
- [l [geg] g
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Expanding and truncating;

PRIt " [ 2 He 2
= |4+ X |-2H[Y + ¥ |~-K+ Y QY. HK -
-v) G-) [ G-v) J +(/:]\Cr3 G-v)

— i (2"\/) H ] v
Gy

Expanding now the positive exponential;

[+ (ZHY+KV‘)J % = | + % (2Hv+ kY +[ J[ G-2v) (2uvu<v)

(-v) 1-¥)

[( ( —zv)][ (2-3v) [ QHY+ Kv‘)
2vIL GAAJL G- 6
Expandlng and truncating;

‘L‘PC*)"“‘ 2 [auly - 26G-23) -20-2v) WK
= 1 *+e5 [24] =" )[}( Z?r33§'4;]~'+5%5?[: (:-v;' *
+ 4 (l-z'v) (2-3v) HJy

3C-*
Consider now the function q (t). This quantity enters into the

integrand of the expression for w (Y ). Hence upon integration,
it will be raised one power in Y . As a consequence, it will only
be necessary to maintain quadratic terms in its polynomial exression.

Now;

=1~ k.nm—la"

= -k Y+ Y
(u—k.,‘y) (u-o-b,gv) 4 13‘3

Combining terms

(ZCY)— -‘:5'3 2HwW-(& a+%e\]4-_l/_- E—4H?('—(J’+2Kaf+(§.‘ e‘.‘-ﬁ-%’eA’) "‘{‘«I*&)]Y
(I-V) [éHw’—éKHuf (b,, ﬁ‘_‘-t-é‘%).o. (k_‘K +é’4¢ﬂy

Forming now the product and combining terms;

J(’}Ct)dt
e ?(‘») = ZHw-(e.,.weﬁ,J {{K z(t-ZV)H W 4
V) (1-v) )
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+ [k —(‘2:;/»-176.‘,‘4-[ -—(;z_x:)u Sa6= C;({(-u%)}y-;-

2
[4 G—2)(2+7) H3_ 6(1-23) KH |w + [zvd—zv) H2G-24) hjj Co
(/ V) Cl=)* O-v) O=-¥)* C-v)

[zm:(:)zr)u < -zv)b J%ﬂ Ee —(lg_‘_,_H &-*-Ba 2y "_‘7‘%}

Integratlng,
v J’
e qQk d = _ —2G-
J’ fz ) ‘E v) [ZH(A‘ (&a‘*%ﬁ)}\"" {[K 2(,'..,2,;'>H w
ke — 2 H]e ,_1 +4J,y v 4(-13(+)
* —2'3' G-v) M+[f- (/-v) > +(l—v) 3(0 11,')2 X+

z(—z-v) KH ur.,.[z_vn—zv)u - G-2V)k Je [zvﬁ—z YH =(-23)
+ 2z ichur+ | 2N Geahe e+ | sz -G kTs,

v [ Ae-zm ] s [heogoe v] 46 [

Consider now forming the product;
t
- pprdt ¥ Lewds 1
Adt= a2 | 2hw (e, +e 3
e f T o Counc+ ,e,@ Y+ %5 {[K 24 sy

o

[k e C
+Lz°"'agf?/')p_] """*["‘ (-v)ﬂel"’/“ M ve (,%Kuw'*
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+| G+ +G-2 N )| Her + | 2v (-2 (-23) b2 a2 k,y.;
-v) 3T - EYQRRS) 3Gy  O-»)

v Kl|e 27 (-2 H= (1-24) H+x. Kle
+ -V j uoH,[-_ 3G-3»)* 3(:—\«),76 Cl-v) (-v) 7

—F[j.:i +-3(;v_%7‘4C<-P[r_gg-téaai;ilayi}

The resultant expression for w (¥Y) may thus be formed. Combining

terms;
= (e
wey) w'-;- s { G +G) | ¥ (‘_:z;i {[k*-%z:_:_; Lﬂe.u

- C
+'[56 (1=v) ﬁ}é%yg -Ae’+4k,{]:zf'+.iﬁs <$£%3-H'<

+ [ 24v + 402G — 4G-v) ] Hars [27(1—21/3 HoG-22) ks -

Cl=v)*> (-v)* Ci=vY* (1-v)

- 3 I?dH + é__ K ed.(+[jzv(-zv)H (_ZV)I% (:-—V) Cl ) 'ﬂ%

(- Ci-v) G- )* Ci=v)

+ [ ks w5 e | kot 'ﬂ&,}"

The above may also be written in a somewhat more simplified form

since the Poisson coefficients may be simplified., Thus;

Ff‘(\r)— W+ %,.) {_ (e«+§eﬂ1}v +(7f,-) {[kﬁ.;-v) ]é’.‘.‘ -+
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+D$° (:-v)'ﬂ -(KM/QJI (a-v) o5 e

Ci-v)
+ v [6 - (4-—V)éz+v)]H w4 | 2v6-2) W= T-2v) kS —
(i-v) Gi-v) 1=3) C-v)

- 3 k‘,(H + 3% K€y 4.[ K/—zv)H G-2v) ...,31_/ H+
G-v) G-v) Ci-v)* G-v) 7 G-V

+(?-::) K] ”“'[b“ +t—v H_']&+B°+ l—v)ﬂ&.]—-

The corresponding strain, €, () is then given as;

(G = 22 [~ ] + 2 { [kav 2l et [l gt

- J oy HK - 4G+ HE
A+ AZ) (Y + (,.v) (}%’ *asLe e maitl Aliad

+ 2‘(1:5;:2\3 H - gl_.%';_ ke - (;;% Re H+0%; Kja,.( {2(%":"1")“3—
- (fl:i\;)l’q e %eH X KJ%+[’R“+_Z. HJ»‘(’N
+ [kp + Hj &] Y

Comments:

Note that at Y = 0, the strain&,,is the value that would
have been predicted at the middle surface from elasticity consider-
ations, namely

S~ = ;“3":3 (Quu+ c/”l’)
Note also that the expression for w () contains five basic
quantities, namely, w, Q.. %. » 4 and 4gand these quantities
all appear within the first three terms of the series (i.e.,w(a'
coefficients). Inclusion of higher powers of Y merely repeat these
terms, but their coefficients become involved with the curvature

parameters, i.e., k‘* R b/‘, H or K. Thus the series for w(Y)
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at least converges in the sense that higher powers of ¥ will contain
smaller and smaller increments of the five basic quantities previously
mentioned.

5. 6. Stress Resultant Calculation.

The stress resultants have been found to be;

54 4

Tau= | Cuuliehpid T [, @iy
% “

Taa = _L o'ﬁ,m-/ndﬂdv Tau® J: f—,paudv)dy

Mus= _}: chr,“v‘( H—l’ev)dv Mogs = I :jo:?, v(i+ eev)dv
4

s sA
Mee= :L-OéeYad'LY)dY Mot = ‘-J:/S’Pd v G+ har)dy

The resulting expressions for the stresses may now be substituted
into the above equations. Though the integrations will not be parti-
cularly difficult, as might be expected, they will be more complex
than integrating a pclyromial. It is at this point that the error
analysis will be introduced into the resulting equations and in a
sense, this section marks the beginning of the technical theory of
shells. However even at this junction, there is no common agreement
as to which simplification to make. In particular, there are three
in common usage and defined as;

i) Love's first approximation theory

ii) Modified Love'’s first approximation theory

iii) Love's second approximation theory.

Only the first. approximation will be used 'in the following develdpment;
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1. Love's First Approximation Theory

Love'’s first approximation theory is tﬁe classical one in that
almost all of the literature cited adheres to its approximations,
Thus it is found in Love’s "Mathematical Theory of Elasticity',
Timoshenko's, 'Plates and Shells', and ultimately in Novozhilov's,
"Theory of Thin Shells'. The first approximation theory requires
that all terms of order of magnitude ( RS ) in comparison with
unity be neglected.

A consequence of the above approximation is that the expressions
for stress and strain may be simplified since the denominators,
(1 + kgv’) and (1 + %{() may be taken as unity. Thus the stress

expressions become;

0L (= _% (e,wv%ya{p«wg)w- (k.(wlge\ j;e,ycl»:}

G-

%Cﬂ = G:%T) {(6/’3,,-_47&..«)4- (- Aﬁvr‘v/(’,e)Y-l- (k 139+v/2.¢) L YG.,,J\:]

XgCr)= E e..+27rvl
056() 2(1+V){ D‘/64- J

Neglecting terms of ﬁz& in comparison to unity, the integral of

& (r) becomes.
v
Gwd = - ¥ (S - ° 2
J Y 25 (Quu+ o)y (:—%)J w&)_iv_

Comparing the terms resulting from the integral with the remaining
terms in the stress expressions, it must be concluded that the
contributions of the integral is of order ( R § ) in comparison

with unity and hence must be neglected in the first approximation
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theory. Thus the resultant expressions for the stresses become.

OLu(= . E {(&M-ﬁ veﬂe)-o-(.léf-v&)y]

(4-v

T G-V

04 - e, Y
750) P d./s +2 }

The corresponding strain expressions become;

edd. )= Q.M + "Ko( Y

BeC= £ {(%e"""eow) + (4 +w<<¢)tll

eﬁg(f)= eﬂe + #Y
G = Qa+2TY
Cn () = (n-'v) G ﬂe) Q- V)C&*'%

Note the simplicity of the above expressions and their relation-
ship to the form that would have been derived for a flat plate., The
form of the equations for the shell and the plate are identical.

Thus Love's first approximation describes the conditions that exist 3w
a.shell that is so thin in comparison with its curvature thgt the
curvature effects do not influence the stress strain relations.

This is exactly the same phenomenon that is experienced in very thin
curved beams where the classical beam bending formula is still re-
tained.

One further simplification may be made and that is in regard
t§ the curvature change and twist experiences. Now these quantities

have been given as
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KRG A G YR ke
$ kS G- B H FY g B4
= 'JEaéfd‘ +is B > 2 43 - 5535*“5’;@4”%@

Vhereas the strain expressions have been given 3s;

Cux 75‘-3# *515 3}1"&&«/
g?e::zévé;g:415%§:§é%4¥-&i%(ﬂ’
8 5(%)+ 4 &%)

Comparing the tangential displacement terms im the cyrvgture ehange

and torsion expressions to those im the straim expressioms, it is
seen that they are of the same order of mggnitude. Simce the
curvgture change expressions in stress and strei.n equagtions gre
multiplied by ¥, it must be concluded that the curvatyre chyage
and torsion expressions may be simplified by the exclusion of the

tangentiagl displacement terms. Thys;

7 &3 34 ne‘dp a;e
s vl (Laar), F
£’ 55%) 5% %
-l ow
e A a«ga n'*'d X aetg
Consider nowv the evglyation of the stresgs resultants Again, thege
expressions may be simplified in that the terms (1+ k‘Y) snd

1+ %,Y) occurring in the integrals may be given the value of umity.

Substituting and integrating, the results become;
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Tau= (f'f)(e 2w +VE18) 'f:p:% Sy

Tee = T'é:i (e +ve) ?d-z?.% e

Mo = "7%% (Ko s e) Mg :z(fw) >

e lza-v*)%*wm Mpet* -2;,55,)"'
Comments:

Love's first approximation is the classical one g8 ysed in shell
analysis. Reissner (NACA TN 1833) states that gll the essentisl
ingredients of shell theory sre embodied in it. In his book, |
Novozhilov states that this approximgtion is due to Hushtetivy
Vissov (See Novozhilov, pp. 85) and is to be used when the bending
stresses are of the sgme order of magnitude gs the membrane or ’
in-plane stresses. However, whatever the resulting error, it will
be the analysis on whiqh all subsequent work will be bgsed,

Certain interesting ‘consequences of the first approximation
result. Note in particular that the effect of the normal straia
€,y vanishes. Hence if a first approximation derivation were to be
initially stated, the contraction or expsnsion of the normgl line
segment could be neglected., In essence this is stating that &
simultaneous plane stress and plagne strain condition may be sssumed
without effecting the first approximation gssymptions, Howvever,
this conclusion hold only for stregs resultants, A further comment

will be included for displacement formulations,
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Another interesting observation is that within the scope of
first approximation theory, "lqc =-Ed. and M* = Mp,g. However,
consider the last equilibrium equation, the one obtained by
summing moments about the <Y axis. This equation is given as;

'F.'(ﬂ—'fl'ng-qugse—%eM’ed =0
Thus first approximation theory does not satisfy the above
equation unless the principal curvatures are equal. Hence it must
be concluded that the sixth equilibrium equation must be neglected
in using first approximation theory.

The present development is based on a stress resultant form-
ulation and for such a formulation, it has been found that the
effect of the contraction or expansion of the normal may be neglected
so t'f‘ar as first order theory is concerned. However consider the
alternate formulation of the shell problem, namely in terms of
middle surface displacements. Under such circumstances, inspection
of the term w ( Y¥) indicates that terms quadratic in - must be
maintained before the first approximation theory can be utilized
to discard terms. In fact, for a first approximation theory,

w (<) must be taken as;

- - - 2
wne w2 (QuatSedY ~36, (Kt k) x”

If w (¥) 1is chosen as just w, then the resulting displacement

formulation will yield plane strain rather than plane stress

solutions.
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5. 7. Additional Comments on Curvature and Twist Simplifications

The quantities 4 , #d and Y have been given as

’ 4
PRy~ A:g'f‘As a}egw#ﬁ'a'a)%‘?%v

i B e B ARG Ny

1 dur + L PAQu, 4 IB A4, é,‘(_/..a#_—l-éﬂ,q
= "8 ég/a A‘Ba;e do “ag*de I8 8 ¢s P84
+ 1 Qur_L 9B v

(5L
In dealing with Love's first aﬁproximation, it had been pointed
out that on a basis of a displacement comparison, the tangential
displacement terms appearing in the above expressions might be
omitted and the above equations could then be written in the

simple form

" 58 Sigs i g8 Sut +ree 3F

The above simplification will hold for those cases where the
displacements are small and of the same order of magnitude as the
strains. Thus the simplifications will certainly hold true for
shallow shells and for those shells where the bending stresses
will be the same order of magnitude as the in plane stresses.
For many shells, however, the above approximation is too restric-
tive and it is the purpose of the present section to show that
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the curvature change and twist expressions should generally be
used with the tangential displacement terms.

As a surface deforms, the deformed normal, ;', will rotate
relative to the undeformed normal, ;, so that if the two normal
were placed at a common origin, say on the undeformed surface,

the situation might appear as shown below.

Let the angle of rotation between the two normals be®and assume

that this angle is small. The expression for n' had been found

in Chapter II and was given as;

Az _éj;;z- ( k,‘nsa-e.g;&:)f + (ks ABV‘-—A%S@;+ABH G+ g,ﬂ)z]
The quantities E, F, and G were coefficients of the first

quadratic form of the deformed middle surface and were found to

be;

E=A(+26) , F=aBQy ; G=5(r28s,)
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-/ - T
Az Ryt - &u)x. (—m..l_ag:— k.
("‘ A gu)tT B I
Now for sufficiently small values of the angle & , this quantity

may be treated as a vector quantity with components alpng.theuz,

3 and E axis. Remembering that ; and ;' are both unit vectors,

&= Axh= Rx ’:(kdu—_al_g;&tyq-(l%v-é_%g);-;- L]

Expanding;
- (43547 (g 10T
Thus the vector of rotation of the normal n' lies in the tangent
plane to the undeformed surface and hence the plane of the vector
n and n' are perpendicular to this plane. Note further that the
8 vector lies in the second quadrant so that the I'component
of this vector is in the negative i direction.

Define the scaler components of the rotation vector & as
©,. and 6'6 , where;

Cu= ée'zf—é glgl' 5 %: &qﬂ f#—?rc.l‘f
Hence;
6=-6,1 +8, 7

As a surface deforms and an element of that surface distorts
and changes dimensions, the element also rotates about a normal
to the surface. The figure below shows a rectangular element on
an undeformed surface. The deformed element is superposed on the
figure so that both elements lie on the tangent plane to the
undeformed surface. The rotation of the element, designated as X ,
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will be measured by the relative angular displacements of the

diagonals of the deformed and undeformed element.

Note that Ex' and E’e’ are the tangent vectors to the « and/e
curvalinear coordinate curves of the deformed surface and also that
RF= Y -%,
Now as developed in Chapter 2;

T/ = 2 +Fl— oz L éea;,«-éz_gg,éw)z

Therefore the rotation of an element on the surface is given as;

2% = 9F + L 2B v— L o4 — L
7= 9'& g 48 Aai,g
Now the expressions for X{, & and )’ may be written as;

Aoz L 968 4 L 386,
7 ax The 48
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where H is the mean curvature and %@ the shesy stress. If it
is now remembered that the curvature are change, ‘? bg’ was given

as;

/Qu/- IQaz‘-' A "604 S

then in terms of physical changes on the middle surface

b bog=_1 L by
o F?ao(e+ 246, - Ry O

A8 98
~4o-

2 =L gga_ Ba/'e +é‘%%7)é%e«+/f,-ld)ﬂ'+”§e

Recalling now the simplifications that had been made in

é’.@l-ﬁ-gl—gg%-é@%‘g

>

calculating curvature changes, it had been stated that the
quantities éueu’ and 'fe%s could be neglected in comparison
with & and& . Then attempting at consistency, the tangential
displacement terms in .4/, & and had been discarded on the
premise that they would be of the same order of magnitude as the
tangential displacement terms occurring in the neglected strain
terms.

Observing the above equations, it is noted that the tangential

displacement terms occurring in_;({‘and A,,gu measure two different
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physical conditions. In the first case, these terms enter into
the rotation of the normal while in the latter they enter into
the strain. If it is now assumed that although the strains are
small, the rotations need not be providing they do not violate
the bounds of linear theory, then the expressions _#% ,“ﬁs will
measure the change in curvature and ) will measure the torsion,
but these expressions must include the tangential displacement
terms since these terms enter into the rotation expressions.
Summarizing, the expressions for/é,/ﬁ and 7 , for
reasonably large rotations of the middle surface, should be taken

as
—

A==l B[ P L 3 WY{ o4
T Aded A Jo ns?’eﬁ;}%c“"ﬂaa @4)4',2%%
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CHAPTER !6‘

6. 1. Summary of Equations

Consider now a summary of the equilibrium equations, compat-
ibility equations and stress resultant-deformation equations
based on Love's first approximation.

Equilibrium Equations

—

26T, 2(aTa) + 24T, w,g,e] th T+ =0

7s (3 E 90
| | 2(ATep)+ 2 (BT aa‘r -~ QA T: Ts =0
AB [cye PO BT SR T 4 e BT

_A_la_ [%(87;04-8%@739] - ‘Q(T:.(—/‘}ﬂ;,s +qx=0
4 [3%0\"4@@)4-8%(8*4%)—% Mux + %3— M,e{, - Tey=0

1 [8.(BMu) + 2(AMgL) 9B Mgeg + 9A 1 _
AR |9 °(°A+o;e oct) o e 48 *J’KY-O

| Mo o+ ks - o Mo =0
Compatibility Equations

B B (ki K -AQ Y2941 +4, IA & k lAds, +4. B o8
4128 -422 7 +ée 2 +ka ;ﬁ_g,,e#a,e e - 28 (530 =

A ‘%Q . qgégag,—,.g)_sdi?z 28T+ hu B Eo+hs [863,3@8 ggw B} Ja{ga res)] =0

%d/é( + ‘id + 1

| | BOCss , 9B (€,,-E.)-A 3¢ e |
L {Q.,[Ba_ +5;%B&u)f¥ e,‘d]+3._LAJ§a+

gk A ﬁé B

+ A (€ ~Sg)-B. 28y _3Be, [l -0
ga L ki %z}
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Stress Resultant-Deformation Equations (Love's First Approximation)

(T -E5 CHRT Maas Z_%_i ) (K vA)
Tﬁéieﬁ) €us Ma/eﬁz_t(:“'_%; +

T 20.55‘)(%+V&Q M(s(s ) :2§SV‘)(&+ )
e (ol

—

An alternate statement of the same equations wherin the deformations

are expressed as functions of the stress resultants is given as

follows.
~
= L (Tay-v Tz e 12 (Mao -1 M,
W o= ot f%é) A égfi o mf/ge)
S g = Ta = - ot
48 = zmv) % A 545364 VMotrs)
- 12G#v)
elqe-:é.s_ (7/%3 V-,:to&) r)’: Céa Mo(/a
Strain Displacement Relations
(:; =4 QA . =1 ) =A
e e G G R R b S g B2 2
=-L3 /L )—_L Q4 dur __&( ) + kg A
Ao F?c%((;;f%gr %5 + = é&x.)q}ng v
- - -1 983, 1 3y by 3B
#o= b S5 (h 3 e 3T S E L e g

ouw” 1.3
AB dxgs A‘BQS dxX AB* oté/*e +k sa/’f—n’ggﬁ"é é’#jﬁéax



First and Second Quadratic Forms

T=AG+20:) Ch 2AB€us (dutdla) + 82(n+2eﬁe) (d/q\2

I= -A2 [‘Q“(H €x ,)4-_1(,(]@::01—2/48']‘ [ddd/ﬁ)- BQDQFG +§9ﬁ)+/§@] (d/@z

6. 2. Resultant Shell Equations Discussion

Two formulations of the shell equations are possible. One
is a formulation whereby the resultant shell equations are exhib-
ited in middle surface displacement form and the other whereby
a middle surface deformation presentation is used. 1In the presert
work, the latter formulation will be utilized.

In attempting to use the middle surface deformation formulation
of the shell equations, it would be wise to briefly review the
shell problem. In dealing with the differential geometry of
surfaces, it was pointed out that if the Gauss-Peterson-Codozzi
conditions were satisfied and if the first and second quadratic
forms of the surface were known, then a surface was uniquely
specified up to its position in space. These arguements, when
applied to a surface perturbed from some reference surface, led
to the definitions of the three strains, &, , §%6, E?P and the
curvature changes,,kﬁb,dgé,‘ﬁd, Thus a total of six unknowns
were necessary to define the perturbed surface. The Gauss-
Peterson-Codozzi conditions yielded three relations involving the
above six unknowns and hence the surface problem become one of

third degree of indeterminacy.



A given shell was reduced to a surface problem by using
stress resultants and these in turn were related to each other
by means of the equilibrium equations. It had been hoped that
the additional equations provided by the equilibrium conditions
would ultimately yield the additional three equations relating
the surface deformations so as to uniquely define the perturbed
or deformed surface. However, the equilibrium equations were
. in stress resultant form whereas the compatibility equations

and indeed the first and second quadratic forms of the surface
were in deformation form. Hence additional equations relating
the stress resultants and deformations had to be developed.

It was at this point that the various assumptions were introduced
thus transforming what up to then was a rigorous linear analysis
to a technical analysis.

Two major limitations were imposed on the linear shell
analysis in developing stress resultant deformation relationms.
The first limitation was the use of Kirchoff hypothesis which
prescribed the displacement variation through the shell thick-
ness and the second was the use of Love's first approximation
theory which truncated resulting expressions. Thus an error was
introduced into the shell analysis over that which ordinarily
would be associated with linear analysis. The magnitude of the
error was and is generally thought to be of order (kS§ ).

Once the stress resultant deformation relations exist, then
there exists a total of 16 unknowns, six deformations and ten
stress resultants. However, there exists a total of seventeen

- equations, namely the three compatibility equations, the six
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equilibrium equations and the ten stress resultant deformation
results. Thus, there exists one more equation than there are
unknowns. However, inspection of the last of the equilibrium
equations, the one found by taking moments about the k axis,
is an algebraic relation relating the transverse shear stress
resultants to the twisting moment stress resultants. This
equation may then be thought of as an equation which is not
linearly independent of the remaining sixteen equations in that
it may be derived from the stress resultant deformation relations
for the stress resultant involved in its form. Thus it may be
concluded that there are only sixteen linearly independent
equations and sixteen unknowns. Assuming suitable boundary
conditions, the resulting system of equations is solvable.

The introduction of Love's first approximation theory has
somewhat simplified the number of unknowns necessary to consider.
Thus as has been found, T =Tgy« and Mag = Mg . Hence, there

are only a total of fourteen unknowns. The number of indepen-

dent equations is now fourteen, the three compatibility equations,

the five equilibrium equations (the sixth being discarded in that
it's not linearly independent of the remaining equations), and
the six stress resultant deformation relations. Note one thing,
in dealing with the general problem it was mentioned that the
sixth equilibrium equation could be discarded in that it

could be derived from the stress resultant deformation

equation relating transverse shear and twisting moment. In using
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Love's first approximation theory, this equation must be dis-
carded in that it cannot be satisfied.

The problem that is being now confronted is the manner in
which the resultant shell equations are to be formulated. They
may be stated in terms of strains and curvature changes or they
may be formulated using stress resultants. From the mathematical
view either formulation is acceptable. However, pfevalence in
literature dictates that the stress resultant formulation is the
more desirable.

Whatever formulation is utilized, it is almost invariably
true that the transverse shear stress resultants are eliminated
from the system of equations. The reasons for this are two fold.
One is that the use of the Kirchoff hypothesis in essence negates
the existence of this stress resultants and sécondly, stress
resultants by themselves are not the end of shell analysis.
Invariably, once the stress resultants have been calculated,
either middle surface displacements or stresses are calculated
from the stress resultant solution. Thus if the transverse sheer
stress resultant were explicitly solved, then since there does
not exist any stress resultant deformation relation for this
variable, an auxiliary stress resultant system of equations would
have to be solved in order to find the other stress resultants.

Since a stress resultant formulation of the resultant shell
equations will be presented and since Love's first approximation
theory will be utilized in expressing the relations between

deformations and stress resultants, then a total of eight equations
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will be necessary. Now the equations of equilibrium provide five
equations and thus it will be necessary to transform the three
compatibility equations into stress resultant form.

©.:3. Compatibility Equations in Terms of Stress Resultants,

In order to facilitate the transformation, each of the com-
patibility equations will be dealt with separately. Furthermore,
if the first transformed compatibility equation is obtained, the
second may be found by an interchange 6f subscripts. Thus, it is
only necessary to transform the first and third of the compatibility
equations.
1. First compatiblity equation.

This equation is given as

s . OB (o _ ) _
B;fﬁ +a—:i(4% A’g)-—ﬁéé/é? 25/3‘6.')"4-4/33/43. 676-4-’% [A gfe’eq-dé/%eﬁ

- B3 — 98 (e~ )| = O
3% o ﬁee“)

Substituting the deformation-stress resultant expressions;

& 3(%(3_ q/aMmD+ /2(I+v)dﬁfm - M) - /,z&(/-g)A OlMus

ES3 Ix I8
- 24(1+7) A Mg v) () A D Tos ; 2(4A Tag-
SR 5 e+ 2 e e 20 A e e

-'J,B(B_;TBQ_VB_T,,Q) C__)__B_f‘r —Tyabj o

O
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Multiplying through by Es/,az , the result becomes;

Bt - §htu) + (14 32 (pgeMuc)-C147)A Qftes- 2434 Mo
+(+Y s"/:,eggv;ﬂ +l_§_" k“[z(;+mz)A§/63,,, +2 (:+v)§é.1:p_s(§{ﬁ-vg£“>_
- (i+V) 3_5 (Tas -‘!;\.D] =0

The above equation may be simplified but the basis of the
simplifications lies not in the stress resultants but rather in
the displacements. Note first that the force stress resultants
are prefixed by a quantity hszwhich indicates that so far as
order of terms are concerned, the force stress resultants are
at least of order (k§) higher than the moment stress resultants.
Note further that each force stress resultant has its corresponding
image in the moment stress resultant. That is to say the struc-
ture of the first compatibility equations in looking at the
stress resultant part is the same as that for the moment stress
resultant.

If the above equation were expressed in terms of strains and
curvature changes, note that the order of magnitude of all its
terms would be the same. This is most readily seen by inspecting
the original and given statement of the first compatibility
equation. Now is using Love's first approximation, it has been
shown that the curvature change and twist expressions could be
simplified so as to contain only terms dependent on the rotations.
Thus strain terms of the type(k é)where k is the curvature and e
is the strain could be discarded in comparison with the curvature
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change & or the twist 9 . Now each curvature change or twist
term in the first compatibility equation has a direct counter-
part in the strain terms and hence on the basis of consistency,
these latter terms may be dropped. Thus the force stress
resultants may be omitted and the first compatibility equation
takes the form

B%Mo(ep —VB%‘(&d-f (l+V)§$Mpﬁ— (:+v3§§.M.m—(4+v)A aa"éﬂ,e

-20+Vv) 2A Mukﬁ =0

I

Or rewriting;
(B3Eae + 38.Mes) - (V'8 Pohatr V3B Mud) - 2B (i) -

- O+ A 9Mog +(1+V)4 Mug [~ (1+V)FA My =O
[ 4eﬁe a8 * a8 ks
Or more conveniently, in the final form
£ BN -2 B BMu- ;a(Mw ¥Mea)- (:+v)__6w,5@) (m/)aA Mug =0
By direct analogy, the second compstibility . equation may be writter,
2. Third compatibility equation.
The third compatibility equation is given as;

brsj(g(q‘—h //qg-f—_‘_. {a% *[88%4.6_&(@ - Cux)- A ae,;e j

+;%.1§J?*%§¢4-3gféu-§¥0-g}g§39-gg‘Qfg}==0

Note that in this case, simplifications of the type encountered
in the first compatibility equation cannot be effected. The
tangential displacement terms in the above equation occur in
derivative form whereas the curvatures appear as algebraic structures.

Thus an order of comparison argument cannot be made.
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Substituting

- bq( - -
-/E-&'a (Mﬁ(d VM#QB_P,E%S Mlgﬁ VMquszé_és%{*[B%(%p 1/7;,‘)

+ G+v) 3_3_ (_ﬁg‘-‘:w) - (H")é%@-r’}é) - (""”)% T‘*’J} +

ABES 48
- G+ %Tﬁd]‘}:o

+ L 2. JB_£A %(‘&,‘-7%34- Gi+v) %(Eﬂ‘%)—ﬁ+v)£_(8'@g) -

ES>
Multiplying through by (2 and recombining the terms;

kg (Mai=2Mag) + kt (Mg =1 Mot +/Z$4—; £ {_zf“ [R Tee)-v2Em)

- 35 (o ~vTag ) (1+v) q.g_ 647‘.,9)—6#7) %T.ﬁl} +7§%B % {J-s-[% ATaw) -

-V o> -3 (v o) - (1) B aTye)-G9) da'é,a,f.,ej} -0

Summary;
(3G G 98 )=+ 2.G
= BMﬁe)—Vaé? BMuol) — 326{ Moo= ¥Mag) = (i+v 99,7 AM,@-mv)% Mag =0

%(AMM\—'V’%CA%\ —% Glpp ~VMyey )~ (:+v)d% (BM,Q—(u-v)aa_S Msg <O

‘35 (Moo V"}GAS + ko (Mg,"’ VMo )+ f%:a a% {;‘\_[3;( (8‘1/’3,5)- VJ% (BT )-

- - _ P ~ g 2 _
gg—ﬁiu V1ge (HV)Jlé_GaTu,e)—m );ng; T‘?‘_ﬂ’“/a‘%a 23/_5{'?[ 7%641;,,)

_,;/%_641’%@ _g‘éﬁﬁﬁ-v‘ma —(.4-’\133%(81;95}-640 213 7:7'3_] =0
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6. 4. Resultant Differential Equations for A Shell.

Consider now summarizing the equations of compatibility and

equilibrium.

) ZLB‘[%(B_&Q+3%CAT*)+%T¥ - %51’;,13]4— ko Tt + Qu =0

~GATu]+ R Tev+qe=0

LT
@) L [_a_ (BTar)+ /%(A'l;v)] huTooi— R Tap + =0

[i fAv;,,e) +2(n)+

@ L [J% ANjag)+ £2BMeg) - 94, Muw 28 Mug |- Tav =0

) L[ 2 B ,,d%&w.,e)_ 98 Mgs r % Megs | - T =0

(6) fo? (BMge) -vﬁ_( (BMao)-(Mug-V"Mga) ,3_3 -aw)d% (AMy) - (1Mol 24
(7) % @M*a)-vﬂ/%//wﬁﬂ) (Mg -vMatw) %Qg 'ﬁw)a% (BMas)-(i+¥) Mya 25 38 -0

8) (Mot =1 Mag) kg + Moy v Mar) R + 5.

L] 2B vQ (BTas) -
I2AB Jot { E & 3 )

) %&d-v%}ﬁa‘v)%ﬂn?) )28 j} ’sz\a 7% L [.a_maq) mz@p—

_%(1,;,6_1/7;“)_ (l+v)_<9_ (B™ -73) (H-V) 56]}

Note that there are as many unknowns as there are equations
and hence a solution is possible. Now each of the stress resultants
can be expressed in terms of middle surface displacements except for
two, T4, and T, Av - The scheme is now to eliminate these two stress
resultants from the above corresponding system of equations.

Consider solving for T and T, lov from equations (4) and (5).
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Thus;

Tav= L [ 2.(BMud + %(Am.p)_gg_ Mas + %Mﬂ

7,2v=;'-§ [;%(AM#) 4—3%. (BPL;Q-%MM +a_3£. M’PJ

Further, consider eliminating h4ﬂp from the above two equations.
Since the above two equations are symmetric in the « and 8 sub-
scripts and the terms associated with them, it is only necessary
to deal with one equation, say the expression for Txy . Now for
the elimination ofPLFin the expression for Tz, equation (o) will be

utilized. MultiplyingT,, by (1 + v) AB and making the substitution;

Ci+v) ABTuv = G +v)[_aa;‘(er4,,a - 8;% Mﬁg.pﬁ(sw)_ vﬁ_‘(s M) =
- - 2
(M-ga VM(@P\ é_oB(_

‘ +V A B = a‘ Id& B a___B ‘V’u -— ag M Vv a'“1 ‘]/‘aB ,“'

-voB M e 2B -vB oM 3
ﬁ F\@+Ba_:(_4ﬁ5 +8 Meg -vB ;?':a_‘va_g Ma o

2
- 55 M +V 28 Mag

Combining terms;
(+V) AB Ty = 53’9& (M““*Mﬁe)

or;



Note that the above results correlate with those found in
simple beam bending theory, namely that the transverse sheer
force is directly dependent on the moment.

Consider now substituting the above relations into the

remaining equatiors.

(1) (o 2 (BTaL) o2 T 24T - 28 T+ (bt s (=g = O
@ QA_;%‘Z 2 (AT'-e'e ) +£'< (BT*%?SQ“%K‘J “'('—.lfﬂ‘é) %(I‘;bﬁmb +(l-v’)% =0

3) (= { 2[5 20nrMpil]+ 2] 4 3 Owsrpel] - - IhToa -G

+ C=v¥ 7Y= o

4) %(BMﬁg)— va%@Mu)—fMud-VM,sp) gg —6+v)d.% @M*g}-ﬁ-&v} M.;eaé‘/g =0

(5) 3% (AMyw) - ');% /AM,els) '(%S‘VM::(Q%— ﬁ""’)a% (BMo,eB'(Hv)Mu’Gg_S_ =0

= L
(v) %(Mcu‘vmﬁe)‘l- ka(M,‘/g—-VMaa) +Iz§;_3 5% {;L[Z%((BW)—Vé%{ (BTaw )

2
- 08 (v ) =149 2 (0 Ge) ;%-r,,,l},# £.2 {T:s_ [%@:\,)-

L—_';;_%CA‘[PP) - g}g_ (T‘-F_ v'l;d)—(l-l-v)a%(BT,P}_ ﬁ-nb?%mﬁj} =0

Note now that there are six equations in six unknowns.

©. 5. Discussion of Boundary Conditions

What now has resulted is a set of six partial differential

equations in terms of six unknowns, the quantities Tgy ,‘E#s ’-x%b’
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Mha"wﬁp R hﬁqs. Thus there are as many equations as there are
unknowns and hence one requirement for a solution of the equation
is satisfied. The other requirement is for suitable boundary
conditions.

The use of the Kirchoff hypothesis in plate solutions had
shown that in general, all boundary conditions on the displacements
(or stress resultants) could not be satisfied and an equivalent
transverse shear had to be developed. Since the Kirchoff hypotheses
were also usgd in developing the present shell equations, a
similar situation will also be found to be true.

It is tacitly assumed that a free edge of a shell coincides
with a principal curvalinear coordinate line, and further, that
the free inner surface of the shell lies in a plane normal to the
shell middle surface. Assume further that on this free edge,
there exists a general stress resultant state. For arguments
sake,let the edge of the shell coincide with some/3==constant
coordinate line. Thenshowing only the stress resultants ’473 s

.1%6 and T4y, the situation appears as shown.

AT&YC‘SQ

Mugdd,
g ‘r‘.,}a ds,




For a sufficiently small segment Cl&u: the curvature of the
principal coordinate line may be considered as constant. Now
assume further that over this segment, the stress resultants,

'T:,, "I'QF and M,’a are constant., These corresponding forces
and moments may be found by multiplying the stress resultants
by the length increment d&x and further, may be assumed to be
acting at the center of the line segment as shown.

Consider now a sufficiently large segment of the o{ coordinate
line and assume that it has been broken up into a series of segments
each of which has a constant curvature but which may be different
from the adjacent values. Furthermore, assume that for each
segment there are the stress resultants and forces pictured in the
above segment. Over each arc segment then, the stress resultants
are assumed to be constant and of value equal to the stress re-
sultant defined at the beginning of each arc segment. Thus in
the sketch previously shown, the stress resultants indicated are
the values found at the left end point of the arc.

Two adjacent arcs are pictured in the following sketch.




The end points for the first arc are a & c while its mid point
is b. For the second arc, the end points are ¢ & e while its
mid point is d. Note that the curvatures of the two arc are
different so that khz= kq‘+ géf<ﬂd, . Note further that the
stress resultants for the second arc are defined at point c
while for the first arc they are defined at point a. Consider
now replacing the twisting moment’h4ﬁo dSk', by means of two
forces equal in magnitude but opposite in direction. Let these
forces be assumed to act perpendicular to the cords of each

of the arcs and further let these forces be at the ends of the
arcs. The situation is as shown. (The figure shows only the

decomposition of ':Mu/sds,a o

At point c, consider the components of the resultbzg force
along the chord and perpendicular to it. Now perpendicular to

the chord, the resulting force component is;

(M.,’e-:- %4.4.(@ dw) Gs (df%i%) —Mug
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But for - small angles, CBs(qf%gﬁaasl, and hence

?ﬂ%ﬁ dw,
o

. while parallel to the chord, the component is given as;
oM de, +de.
(Ma(,e+ g-o—zﬁdc() SII’) ( Qﬁ_z__ :)
| Again for small angles, Sn (d@lfQQ%(d@;-dG,). But for prinicpal
curvalinear coordinates
| dg= kydsy, ; da,= ke dsy,
and further;
. = C)
de".' AdG(, ; d'ge(z Cq'*'a“édol,)d-(z
Substituting and simplifying;
de,= kaAdot ; d@,= kuAdal
and hence;
d“."_*.‘_d_(’z = kqA de
A
Thus the horizontal component becomes;
oM
(Ma,g + X‘wda.) kg Ad
Consider then the total resultant transverse and shegr stress
resultant forces. Letting these be designated as Tavere and
1%Bepp , the result becomes;

Ty ofp e = Tavdst + - OMgs i

T de, = d M
gEere So -T;’@ Soy 4'("4.1{34-8_6_0:‘@ c:’eb k“d\gg
Dividing through by <JSq and passing to the limit;

-’;yepp = 1:‘\’4--:—3—5—2’?5

/3 = constant coordinate line

7;‘(3?00'—' —':‘P + k,,(Mcx!@
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By direct analogy; |,
-T. = 1 oM
Brers = Tov+o SR

_rlég(epp - ‘l{;,‘ + ‘70 Mlso( oX = constant coordinat line

6. ©, Commentary

Note that the derivation of the effective force stress re-
sultants is a direct consequence of the Kirchoff hypothesis. However,
it is not dependent on whether the first approximation, or its
modification, or the second approximation is utilized. As a conse-
quence, generality of results dictates that the distinction between

_1:@ and Tgo be maintained. The same is of course true forMug
and Mgo -

It should be specifically mentioned that the effective shears
are used only for boundary conditions not for the interior of the
shell. Note further that if the shell is a body of revolution and
symmetrically loaded, then qu = M,gq =0 and hence the effective
shears become the true values.

Thus on a given free edge of a shell, there are only four
independent stress resultants to be evaluated rather then the five
which would result if exactness of the stress resultants was post-
ulated. The use of the effective sheers adds another approximation
into shell theory, but this approximation yields errors of the

same order of magnitude as the Kirchoff hypothesis.

o-18



Addendum

In dealing with the material of Chapters 2 and 3, the derivatives
of the unit vectors, I, E, and k are extensively used. However,
nowhere in those chapters are these derivatives developed. To correct
this oversight, the present addition is included.

Consider now a surface for which the « and,(B curves are the
principal curvalinear coordinate curves. Let i and E.be the tangents
to the o« and/éB curves and let k be given as

k=1x3
The situation is pictured below.

3

It is obvious that k is in the direction of the normal, n, to the

surface and further that;
=Gj ’ —a_f,#
dScL dol ! d%- Ed/s

But in magnitude;

d3x= Adol . dS}e= éd/@

and - _ _ _
oS, =ds. i | d?}e‘-’ds;eé
Thus
. Lok . = ~5Y
X—F\ A ) 4 -BL_a/s



A. 1. Differeﬁtiat' t
a. a%‘éd
Since the differentiation of a vector will again yield a
vector whose component can be resolved along the (I, E, E)
triad, then it will be convenient to find the components
directly;
1. i component
The scalat component is given as
x. az)
IK
which may also be written as

(I’%f;)" 2a-T)- (354)

Hence
C-
2. E component
The scaldr component is given as
7.0
dot
which may also be written as
i \_ o (i~ _,(;.59_

(d ok ) T St J) 5%

and hence
¢&)--(50)
Consider now evaluating the derlvatlve( 429&0 fr
is a continuous position vector
Substltutlng for (87?//6) and (a»‘/aoo then;
2 (ai)= a(s))
S I
Expanding the right side of the above expression
2 (A7) = J oI
2 (AT) 4§5+85_i
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Hence solving for g%z 3
I- 1L 2 ;i)-4 o8
aaéf B 34 4 T
Then returning to the original problem

(3.).)_.-.1_ aaz)J, eVIFL

3-(%)- & 540

Expanding the right side again

and hence
/T' -‘i'zo

P

Thus in final form

(7 %)%

d 8 45

k component
The k scaldr component is given as

- (8)
and which may be rewritten as

ke (8L)= 2 (- R)-7+(4k)--7- 2k

Consider now evaluating the vector az%ﬁad.. For this
purpose consider a section of the o curvalinear curve
and let the plane of the paper be normal to the surface.
Since the o( curve is a principal direction curve on
the surface then there will be associated with the

surface in that direction a quantity called the radius
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of curvature, R, , which will be the reciprocal of the
curvature of the surface, Ro . The portion of the

N curve is shown on the accompanying sketch.

Now by similar triangles

k| =
Hence |8k|. A -
| |= &= kaA _
Note that by the theorem of Rodrigues, dk must be in the

same direction as dR4 which in the limit is the i

direction. Hence;
% = kqA Z
IR

Returning then to the sought component

ko(iY= _I(a“ - -
( 5&) E'EL" = - kuA
b. az/ép
1. i component

The scaldr component is given as

¢- %/;>-_. 2 f.f)—(%.z)
Hence -
(j .?ﬁ)=o
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j component
This component is given as

(-

Now as has been shown
) (54) 641)
Expanding the right side of the above equation

9(84)-4&4_,_,49‘_

Solving for aVQe

_'ﬂ-- _c.._a—(B-
4 o ié' a J)
Expanding the right side

(5% e(7-2£)

But by analogy with the i vector, (J . aé?@d.) = 0 and thus
.24\=_1.98B
(T8H-4%8
k component
The k component is given as
k - 81)

The above may be rewritten as

(¥ 35)- 2CFI=(7- 38y --T-24

However by analogy with the expression for s
ok - k,BJ
da = P73

and thus

(E; a%%&;)=<3

Now the remaining derivatives have either been calculated in the inter-

mediate steps of the above development or may be found by an interchange

of letters.

The results are given in the following table.
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i k
o - - V6% ~ kaA
af/a'g _ '/A as/ao( -
34/5u '/B aA/d,e ~ B
%4s | - s 28w _ .
Ok ke A - -
6%3 - ke B -




